Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloadditions Subject

Recently the solvent effect on the [4+2] cycloaddition of singlet oxygen to cyclic dienes has been subjected to a multiparameter analysis. A pre-equilibrium with charge-transfer character is involved, which is affected by the solvent through dipolarity-polarisability (n ) and solvophobic interactions ( Sjf and Another multiparameter analysis has been published by Gajewski, demonstrating the... [Pg.9]

The synthesis of natural products containing the quinonoid stmcture has led to intensive and extensive study of the classic diene synthesis (77). The Diels-Alder cycloaddition of quinonoid dienophiles has been reported for a wide range of dienes (78—80). Reaction of (2) with cyclopentadiene yields (79) [1200-89-1] and (80) [5439-22-5]. The analogous 1,3-cyclohexadiene adducts have been the subject of C-nmr and x-ray studies, which indicate the endo—anti—endo stereostmcture (81). [Pg.413]

The present procedure, based on the last method, is relatively simple and uses inexpensive starting materials. Step A exemplifies the 2 + 2 cycloaddition of dichloroketene to an olefin, " and the specific cycloadduct obtained has proved to be a useful intermediate in other syntheses. Step B has been the subject of several mechanistic studies, and its yield has been greatly improved by the isolation technique described above. This synthesis has also been extended to the preparation of various tropolone derivatives. " ... [Pg.120]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

The mechanism of cycloaddition reaction of maleic anhydride with anthracene promoted by US irradiation has been the subject of many controversies [32, 37]. Recent work of Da Cunha and Garrigues [35] shows that the reaction proceeds in toluene solution in the 60 85 °C temperature range in 6 3 h. [Pg.157]

Cheletropic processes are defined as reactions in which two bonds are broken at a single atom. Concerted cheletropic reactions are subject to orbital symmetry analysis in the same way as cycloadditions and sigmatropic processes. In the elimination processes of interest here, the atom X is normally bound to other atoms in such a way that elimination gives rise to a stable molecule. In particular, elimination of S02, N2, or CO from five-membered 3,4-unsaturated rings can be a facile process. [Pg.591]

A total synthesis of (+)-55 was performed by Cushman et al. 69) (Scheme 17). It was based on cycloaddition of Schiff base 68 to anhydride 69. The addition product 70, received in the form of a mixture of diaste-reomers, was then subjected to thermal decarboxylation to give rise to diastereomer 71 with the desired trans configuration as the major product. The latter upon methanolysis and selective reduction furnished (+)-55. [Pg.254]

The synthesized CPMV-alkyne 42 was subjected to the CuAAC reaction with 38. Due to the strong fluorescence of the cycloaddition product 43 as low as 0.5 nM, it could be detected without the interference of starting materials. TMV was initially subjected to an electrophilic substitution reaction at the ortho-position of the phenol ring of tyrosine-139 residues with diazonium salts to insert the alkyne functionality, giving derivative 44 [100]. The sequential CuAAC reaction was achieved with greatest efficiency yielding compound 45, and it was found that the TMV remained intact and stable throughout the reaction. [Pg.42]

The tandem [4+2]/[3+2] cycloaddition of nitroalkenes is an extremely flexible method for the synthesis of necins. All of the stereochemical attributes are subject to a high level of... [Pg.288]

To investigate the feasibility of employing 3-oxidopyridinium betaines as stabilized 1,3-dipoles in an intramolecular dipolar cycloaddition to construct the hetisine alkaloid core (Scheme 1.8, 77 78), a series of model cycloaddition substrates were prepared. In the first (Scheme 1.9a), an ene-nitrile substrate (i.e., 83) was selected as an activated dipolarophile functionality. Nitrile 66 was subjected to reduction with DIBAL-H, affording aldehyde 79 in 79 % yield. This was followed by reductive amination of aldehyde x with furfurylamine (80) to afford the furan amine 81 in 80 % yield. The ene-nitrile was then readily accessed via palladium-catalyzed cyanation of the enol triflate with KCN, 18-crown-6, and Pd(PPh3)4 in refluxing benzene to provide ene-nitrile 82 in 75 % yield. Finally, bromine-mediated aza-Achmatowicz reaction [44] of 82 then delivered oxidopyridinium betaine 83 in 65 % yield. [Pg.11]

The design and application of chiral, non-racemic Lewis acids for the asymmetric Diels-Alder reaction has recently been a subject of considerable interest.9 Several methods have been developed in many laboratories1 2 3 4 5 6 7 10 but catalysts are still needed that are more efficient in governing the stereochemical course of the cycloaddition reaction. [Pg.19]

Inter- and intramolecular hetero-Diels-Alder cycloaddition reactions in a series of functionalized 2-(lH)-pyrazinones have been studied in detail by the groups of Van der Eycken and Kappe (Scheme 6.95) [195-197]. In the intramolecular series, cycloaddition of alkenyl-tethered 2-(lH)-pyrazinones required 1-2 days under conventional thermal conditions involving chlorobenzene as solvent under reflux conditions (132 °C). Switching to 1,2-dichloroethane doped with the ionic liquid l-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) and sealed-vessel microwave technology, the same transformations were completed within 8-18 min at a reaction temperature of 190 °C (Scheme 6.95 a) [195]. Without isolating the primary imidoyl chloride cycloadducts, rapid hydrolysis was achieved by the addition of small amounts of water and subjecting the reaction mixture to further microwave irradia-... [Pg.172]

Diphenylnitrilimine (DNPI) can be subjected to 1,3-dipolar cycloaddition with activated double bonds as dipolarophiles (Eq. 54). It can be generated in situ by reaction of hydrazonoyl chloride with a base. [Pg.172]

To illustrate the overall magnitude of the mechanistic problem, let us consider the varied reactivity of a prototypical carbonyl compound such as acetone, which is subject to many diverse reactions such as addition, substitution, cycloaddition, oxidation, reduction, etc., as illustrated in Chart 2. [Pg.195]

Azide 367 is prepared from 4-r -butyl-2-nitroaniline in 76% yield by its diazotization followed by treatment with sodium azide. In a 1,3-dipolar cycloaddition with cyanoacetamide, azide 367 is converted to triazole 368 that without separation is directly subjected to Dimroth rearrangement to give derivative 369 in 46% yield. Reduction of the nitro group provides ortfc-phenylenediamine 371 in 91% yield <2000EJM715>. Cyclocondensation of diamine 371 with phosgene furnishes benzimidazol-2-one 370 in 39% yield, whereas its reaction with sodium nitrite in 18% HC1 leads to benzotriazole derivative 372, which is isolated in 66% yield (Scheme 59). Products 370 and 372 exhibit potassium channel activating ability <2001FA841>. [Pg.48]

In addition to the [4+2] cycloaddition, intramolecular [2+2] photocycloaddition was also successfully used as a main procedure in the synthesis of (i)-ginkgolide B <00JA8453>. The studies on the model reactions and molecular mechanics calculation show that the stereochemistry of the substituents at C6 and C8 should influence severely the reaction diastereoselectivity. When syn-diastereomer 41 is subjected to irradiation the reaction gives a single diastereomer 42 in a quantitative yield since two substituents at C6 and C8 would be in pseudo-equatorial orientation in the chair-like transition state. [Pg.136]

Individual aspects of nitrile oxide cycloaddition reactions were the subjects of some reviews (161 — 164). These aspects are as follows preparation of 5-hetero-substituted 4-methylene-4,5-dihydroisoxazoles by nitrile oxide cycloadditions to properly chosen dipolarophiles and reactivity of these isoxazolines (161), 1,3-dipolar cycloaddition reactions of isothiazol-3(2//)-one 1,1-dioxides, 3-alkoxy- and 3-(dialkylamino)isothiazole 1,1-dioxides with nitrile oxides (162), preparation of 4,5-dihydroisoxazoles via cycloaddition reactions of nitrile oxides with alkenes and subsequent conversion to a, 3-unsaturated ketones (163), and [2 + 3] cycloaddition reactions of nitroalkenes with aromatic nitrile oxides (164). [Pg.21]

A.1.3. Syntheses of Natural Products and Related Compounds 1,3-Dipolar cycloaddition reactions of nitrile oxides in the synthesis of natural products and their analogs has been the subject of a recent review (458). [Pg.90]

The [4 + 3]-cycloaddition is a commonly used method for the synthesis of seven-membered rings.9 Many of these reactions involve metals, principally in the role of a Lewis acid as exemplified in Equation (10). These Lewis acid-catalyzed [4 + 3]-cycloadditions have been reviewed by Rigby,62 Sarhan,63 Harmata,64,65 and Hoffmann,66 and will not be reviewed here due to the role of the metal as a Lewis acid. Several computational papers on this subject have also been published.67-71... [Pg.616]


See other pages where Cycloadditions Subject is mentioned: [Pg.157]    [Pg.67]    [Pg.291]    [Pg.227]    [Pg.519]    [Pg.344]    [Pg.174]    [Pg.282]    [Pg.181]    [Pg.474]    [Pg.535]    [Pg.1218]    [Pg.35]    [Pg.95]    [Pg.98]    [Pg.481]    [Pg.194]    [Pg.247]    [Pg.324]    [Pg.121]    [Pg.123]    [Pg.212]    [Pg.214]    [Pg.107]    [Pg.891]    [Pg.773]    [Pg.20]    [Pg.26]    [Pg.82]    [Pg.399]    [Pg.558]    [Pg.560]   
See also in sourсe #XX -- [ Pg.559 ]




SEARCH



Cumulative Subject 3 + 2] cycloaddition reactions

Cumulative Subject intramolecular cycloaddition

Cumulative Subject via cycloaddition

Subject 4+3] Cycloaddition reactions

Subject cycloaddition

Subject cycloaddition

© 2024 chempedia.info