Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reaction Subject

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

The mechanism of cycloaddition reaction of maleic anhydride with anthracene promoted by US irradiation has been the subject of many controversies [32, 37]. Recent work of Da Cunha and Garrigues [35] shows that the reaction proceeds in toluene solution in the 60 85 °C temperature range in 6 3 h. [Pg.157]

The design and application of chiral, non-racemic Lewis acids for the asymmetric Diels-Alder reaction has recently been a subject of considerable interest.9 Several methods have been developed in many laboratories1 2 3 4 5 6 7 10 but catalysts are still needed that are more efficient in governing the stereochemical course of the cycloaddition reaction. [Pg.19]

Inter- and intramolecular hetero-Diels-Alder cycloaddition reactions in a series of functionalized 2-(lH)-pyrazinones have been studied in detail by the groups of Van der Eycken and Kappe (Scheme 6.95) [195-197]. In the intramolecular series, cycloaddition of alkenyl-tethered 2-(lH)-pyrazinones required 1-2 days under conventional thermal conditions involving chlorobenzene as solvent under reflux conditions (132 °C). Switching to 1,2-dichloroethane doped with the ionic liquid l-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) and sealed-vessel microwave technology, the same transformations were completed within 8-18 min at a reaction temperature of 190 °C (Scheme 6.95 a) [195]. Without isolating the primary imidoyl chloride cycloadducts, rapid hydrolysis was achieved by the addition of small amounts of water and subjecting the reaction mixture to further microwave irradia-... [Pg.172]

Individual aspects of nitrile oxide cycloaddition reactions were the subjects of some reviews (161 — 164). These aspects are as follows preparation of 5-hetero-substituted 4-methylene-4,5-dihydroisoxazoles by nitrile oxide cycloadditions to properly chosen dipolarophiles and reactivity of these isoxazolines (161), 1,3-dipolar cycloaddition reactions of isothiazol-3(2//)-one 1,1-dioxides, 3-alkoxy- and 3-(dialkylamino)isothiazole 1,1-dioxides with nitrile oxides (162), preparation of 4,5-dihydroisoxazoles via cycloaddition reactions of nitrile oxides with alkenes and subsequent conversion to a, 3-unsaturated ketones (163), and [2 + 3] cycloaddition reactions of nitroalkenes with aromatic nitrile oxides (164). [Pg.21]

A.1.3. Syntheses of Natural Products and Related Compounds 1,3-Dipolar cycloaddition reactions of nitrile oxides in the synthesis of natural products and their analogs has been the subject of a recent review (458). [Pg.90]

Allene is a versatile functionality because it is useful as either a nucleophile or an electrophile and also as a substrate for cycloaddition reactions. This multi-reactivity makes an allene an excellent candidate for a synthetic manipulations. In addition to these abilities, the orthogonality of 1,3-substitution on the cumulated double bonds of allenes enables the molecule to exist in two enantiomeric configurations and reactions using either antipode can result in the transfer of chirality to the respective products. Therefore, the development of synthetic methodology for chiral allenes is one of the most valuable subjects for the synthetic organic chemist. This chapter serves as an introduction to recent progress in the enantioselective syntheses of allenes. Several of the earlier examples are presented in excellent previous reviews [ ] ... [Pg.141]

The formation of heterocycles by cycloaddition reactions of conjugated dienes is the subject of this chapter. Almost the entire account is devoted to the Diels-Alder reaction of dienes with heterodienophiles to yield six-membered ring compounds (equation 1). Many such reactions have been reported and there is a plethora of reviews. Somela p are general others are cited at appropriate places in the text. This account is highly selective, concentrating on recent work with particular regard to the stereochemistry of these processes. [Pg.481]

As with any modern review of the chemical Hterature, the subject discussed in this chapter touches upon topics that are the focus of related books and articles. For example, there is a well recognized tome on the 1,3-dipolar cycloaddition reaction that is an excellent introduction to the many varieties of this transformation [1]. More specific reviews involving the use of rhodium(II) in carbonyl ylide cycloadditions [2] and intramolecular 1,3-dipolar cycloaddition reactions have also appeared [3, 4]. The use of rhodium for the creation and reaction of carbenes as electrophilic species [5, 6], their use in intramolecular carbenoid reactions [7], and the formation of ylides via the reaction with heteroatoms have also been described [8]. Reviews of rhodium(II) ligand-based chemoselectivity [9], rhodium(11)-mediated macrocyclizations [10], and asymmetric rho-dium(II)-carbene transformations [11, 12] detail the multiple aspects of control and applications that make this such a powerful chemical transformation. In addition to these reviews, several books have appeared since around 1998 describing the catalytic reactions of diazo compounds [13], cycloaddition reactions in organic synthesis [14], and synthetic applications of the 1,3-dipolar cycloaddition [15]. [Pg.433]

The exact structure of carbonyl ylides has been the subject of a variety of theoretical investigations over the past few decades since their intermediacy was suggested in 1965 during the cycloaddition reaction of substituted epoxides (1). Houk et al. (2) has undertaken a detailed smdy of the carbonyl ylide structure and reactivity by the application of computational methods (Fig. 4.3). [Pg.255]

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

Only a few reports have described the application of optically active nitrile oxides in 1,3-dipolar cycloadditions (65-70). A general trend for these reactions is that moderate-to-poor diastereoselectivities are obtained when it is attempted to control the stereoselectivity using a chiral nitrile oxide. In one of the few recent examples, the chiral nitrile oxide 43, derived from Al-formylnorephenedrine and 3-methylnitrobutene, was subjected to reaction with diethyl fumerate (Scheme 12.16) (69). Compound 44 was obtained as the major product of this reaction as a 75 25 mixture with its diastereomer. [Pg.829]

Other chiral azomethine ylide precursors such as 2-(ferf-butyl)-3-imidazolidin-4-one have been tested as chiral controllers in 1,3-dipolar cycloadditions (89). 2-(ferf-Butyl)-3-imidazolidin-4-one reacted with various aldehydes to produce azomethine ylides, which then were subjected to reaction with a series of different electron-deficient alkenes to give the 1,3-dipolar cycloaddition products in moderate diastereoselectivity of up to 60% de. [Pg.831]

The use of chiral azomethine imines in asymmetric 1,3-dipolar cycloadditions with alkenes is limited. In the first example of this reaction, chiral azomethine imines were applied for the stereoselective synthesis of C-nucleosides (100-102). Recent work by Hus son and co-workers (103) showed the application of the chiral template 66 for the formation of a new enantiopure azomethine imine (Scheme 12.23). This template is very similar to the azomethine ylide precursor 52 described in Scheme 12.19. In the presence of benzaldehyde at elevated temperature, the azomethine imine 67 is formed. 1,3-Dipole 67 was subjected to reactions with a series of electron-deficient alkenes and alkynes and the reactions proceeded in several cases with very high selectivities. Most interestingly, it was also demonstrated that the azomethine imine underwent reaction with the electronically neutral 1-octene as shown in Scheme 12.23. Although a long reaction time was required, compound 68 was obtained as the only detectable regio- and diastereomer in 50% yield. This pioneering work demonstrates that there are several opportunities for the development of new highly selective reactions of azomethine imines (103). [Pg.834]

It is a major challenge to keep our coverage of this immense field up to date. One strategy is to publish Supplements or new Parts when merited by the amount of new material, as has been done, inter alia, with pyridines, purines, pyrimidines, quinazolines, isoxazoles, pyridazines and pyrazines. The chemistry and applications to synthesis of 1,3-dipolar cycloaddition reactions in the broad context of organic chemistry were first covered in a widely cited two-volume treatise edited by Prof. Albert Padwa that appeared in 1984. Since so much has been published on this fascinating and broadly useful subject in the intervening years, we felt that a Supplement would be welcomed by the international chemistry community, and we... [Pg.946]

The final important category of [4 + 2] cyclization is the Diels-Alder and other [4 + 2] cycloaddition reactions. This topic has been the subject of intense study for many years and continues to attract the attention of many researchers, as in a great many instances the reactions involved constitute excellent procedures for the synthesis of both heterocyclic and non-heterocyclic compounds. The discussion in this section is restricted to processes which result in the formation of heterocyclic compounds from non-heterocyclic precursors, although of course a heterocycle may be present as a substituent in either the diene or ene component but have no significant or controlling effect in the cycloaddition reaction. [Pg.80]

A very short and elegant synthesis of the 16-rtiembered dilactone ( )-pyrenophorin (515) has been accomplished by the dipolar cycloaddition reaction of a trialkylsilyl nitronate (81TL735). Nitromethane was added to 3-buten-2-one and the carbonyl group of the product reduced with sodium borohydride. The nitro alcohol (511) was converted to the acrylate (512) which was then subjected to a dimerization-cyclization reaction by treatment with chlorotrimethylsilane and triethylamine in dry benzene. Hydrogenation of the mixture of isoxazoline products (513) over palladium on charcoal followed by double dehydration of the intermediate bis-/3-hydroxyketone (514) led to ( )- and meso-pyrenophorin (Scheme... [Pg.460]

The intramolecular 4 + 3-, 3 + 3-, 4 + 2-, and 3 + 2-cycloaddition reactions of cyclic and acyclic allylic cations have been reviewed, together with methods for their generation by thermal and photochemical routes.109 The synthetic uses of cycloaddition reactions of oxyallyl cations, generated from polybromo and some other substrates, have also been summarized seven-membered rings result from 4 + 3-cycloadditions of these with dienes.110 The use of heteroatom-stabilized allylic cations in 4 + 3-cycloaddition reactions is also the subject of a new experimental study.111 The one-bond nucleophilicities (N values) of some monomethyl- and dimethyl-substituted buta-1,3-dienes have been estimated from the kinetics of their reactions with benzhydryl cations to form allylic species.112 Calculations on allyl cations have been used in a comparison of empirical force field and ab initio calculational methods.113... [Pg.285]


See other pages where Cycloaddition reaction Subject is mentioned: [Pg.227]    [Pg.519]    [Pg.344]    [Pg.174]    [Pg.481]    [Pg.20]    [Pg.399]    [Pg.32]    [Pg.128]    [Pg.68]    [Pg.589]    [Pg.756]    [Pg.828]    [Pg.2]    [Pg.254]    [Pg.353]    [Pg.78]    [Pg.569]    [Pg.603]    [Pg.674]    [Pg.546]    [Pg.262]    [Pg.154]    [Pg.154]    [Pg.93]   


SEARCH



Cumulative Subject 3 + 2] cycloaddition reactions

Cycloadditions Subject

Subject cycloaddition

Subject reactions

© 2024 chempedia.info