Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoxazolines cycloaddition reactions

Nitronates derived from primary nitroalkanes can be regarded as a synthetic equivalent of nitrile oxides since the elimination of an alcohol molecule from nitronates adds one higher oxidation level leading to nitrile oxides. This direct / -elimination of nitronates is known to be facilitated in the presence of a Lewis acid or a base catalyst [66, 72, 73]. On the other hand, cycloaddition reactions of nitronates to alkene dipolarophiles produce N-alkoxy-substituted isoxazolidines as cycloadducts. Under acid-catalyzed conditions, these isoxazolidines can be transformed into 2-isoxazolines through a ready / -elimination, and 2-isoxazolines correspond to the cycloadducts of nitrile oxide cycloadditions to alkenes [74]. [Pg.272]

The intramolecular cycloaddition of a nitrile oxide (a 1,3-dipole) to an alkene is ideally suited for the regio- and stereocontrolled synthesis of fused polycyclic isoxazolines.16 The simultaneous creation of two new rings and the synthetic versatility of the isoxa-zoline substructure contribute significantly to the popularity of this cycloaddition process in organic synthesis. In spite of its high degree of functionalization, aldoxime 32 was regarded as a viable substrate for an intramolecular 1,3-dipolar cycloaddition reaction. Indeed, treatment of 32 (see Scheme 17) with sodium hypochlorite... [Pg.550]

Various kinds of chiral acyclic nitrones have been devised, and they have been used extensively in 1,3-dipolar cycloaddition reactions, which are documented in recent reviews.63 Typical chiral acyclic nitrones that have been used in asymmetric cycloadditions are illustrated in Scheme 8.15. Several recent applications of these chiral nitrones to organic synthesis are presented here. For example, the addition of the sodium enolate of methyl acetate to IV-benzyl nitrone derived from D-glyceraldehyde affords the 3-substituted isoxazolin-5-one with a high syn selectivity. Further elaboration leads to the preparation of the isoxazolidine nucleoside analog in enantiomerically pure form (Eq. 8.52).78... [Pg.254]

Individual aspects of nitrile oxide cycloaddition reactions were the subjects of some reviews (161 — 164). These aspects are as follows preparation of 5-hetero-substituted 4-methylene-4,5-dihydroisoxazoles by nitrile oxide cycloadditions to properly chosen dipolarophiles and reactivity of these isoxazolines (161), 1,3-dipolar cycloaddition reactions of isothiazol-3(2//)-one 1,1-dioxides, 3-alkoxy- and 3-(dialkylamino)isothiazole 1,1-dioxides with nitrile oxides (162), preparation of 4,5-dihydroisoxazoles via cycloaddition reactions of nitrile oxides with alkenes and subsequent conversion to a, 3-unsaturated ketones (163), and [2 + 3] cycloaddition reactions of nitroalkenes with aromatic nitrile oxides (164). [Pg.21]

This regioselectivity is practically not influenced by the nature of subsituent R. 3,5-Disubstituted isoxazolines are the sole or main products in [3 + 2] cycloaddition reactions of nitrile oxides with various monosubstituted ethylenes such as allylbenzene (99), methyl acrylate (105), acrylonitrile (105, 168), vinyl acetate (168) and diethyl vinylphosphonate (169). This is also the case for phenyl vinyl selenide (170), though subsequent oxidation—elimination leads to 3-substituted isoxazoles in a one-pot, two-step transformation. 1,1-Disubstituted ethylenes such as 2-methylene-1 -phenyl-1,3-butanedione, 2-methylene-1,3-diphenyl- 1,3-propa-nedione, 2-methylene-3-oxo-3-phenylpropanoates (171), 2-methylene-1,3-dichlo-ropropane, 2-methylenepropane-l,3-diol (172) and l,l-bis(diethoxyphosphoryl) ethylene (173) give the corresponding 3-R-5,5-disubstituted 4,5-dihydrooxazoles. [Pg.22]

Chromone-3-carbonitrile oxide obtained from 3-formylchromone oxime by bromination and subsequent dehydrobromination underwent cycloaddition reactions with terminal alkenes to give isoxazolines 34 (175). [Pg.22]

An interesting antibody-catalyzed intermolecular asymmetric 1,3-dipolar cycloaddition reaction between 4-acetamidobenzonitrile N-oxide and N,N-dimethylacrylamide generating the corresponding 5-acylisoxazoline was observed (216). Reversed regioselectivity of nitrile oxide cycloaddition to a terminal alkene was reported in the reaction of 4-A rt-butylbenzonitrile oxide with 6A-acrylamido-6A-deoxy-p-cyclodextrin in aqueous solution, leading to the formation of the 4-substituted isoxazoline, in contrast to the predominance of the 5-substituted regioisomer from reactions of monosubstituted alkenes (217). [Pg.27]

Cycloaddition of 2-alkoxy-l,3-butadienes, H2C=C(OAlk)CH=CH2, and nitrile oxides to give isoxazolines 51 proceeds with the participation of only one of the conjugated C=C bonds. With benzonitrile oxide, only the vinyl group in alkoxydienes participates in cycloaddition reactions while in the case of phenyl-glyoxylonitrile oxide both double bonds react (222). Nitrile oxides RC=NO react with iron complexed trienes 52. The reaction proceeds with good yield and diastereoselectivity ( 90/10) to give isoxazolines 53 (223). [Pg.28]

Fullerenes Cycloaddition reactions are very popular for functionalization of fullerenes. Such reactions of fullerenes are compiled and discussed in detail in Reference 253. During the last 10 to 15 years, several communications appeared concerning [3 + 2] cycloaddition of nitrile oxides to fullerene C60- Nitrile oxides, generated in the presence of C60, form products of 1,3-cycloaddition, fullerene isoxazolines, for example, 89. The products were isolated by gel permeation chromatography and appear by and 13 C NMR spectroscopy to be single isomers. Yields of purified products are ca 30%. On the basis of 13C NMR, structures with Cs symmetry are proposed. These products result from addition of the nitrile oxide across a 6,6 ring fusion (254). [Pg.36]

A characteristic feature of contemporary investigations in the held under consideration, is the interest in cycloaddition reactions of nitrile oxides with acetylenes in which properties of the C=C bond are modified by complex formation or by an adjacent metal or metalloid atom. The use of such compounds offers promising synthetic results. In particular, unlike the frequently unselec-tive reactions of 1,3-enynes with 1,3-dipoles, nitrile oxides add chemo-, regio-and stereoselectively to the free double bond of (l,3-enyne)Co2(CO)6 complexes to provide 5-alkynyl-2-oxazoline derivatives in moderate to excellent yield. For example, enyne 215 reacts with in situ generated PhCNO to give 80% yield of isoxazoline 216 (372). [Pg.64]

A rapid access to carbocyclic nucleosides, containing a fused isoxazoline ring has been proposed, starting from cyclopentadiene. The route involves a het-ero Diels-Alder cycloaddition reaction of nitrosocarbonylbenzene followed by a 1,3-dipolar cycloaddition of nitrile oxides, cleavage of the N-0 tether and transformation of the heterocyclic aminols into nucleosides via construction of purine and pyrimidine heterocycles (457). [Pg.90]

A strategy based on the diastereoselective dipolar cycloaddition reaction of nitrile oxides and allylic alcoholates, has been applied to the synthesis of bis-(isoxazolines) that are precursors to polyketide fragments. These intermediates can be elaborated into protected polyols, for example, 439, by sequential chemos-elective reductive opening of each isoxazoline or, alternatively, by simultaneously, providing access to all stereoisomers of this carbon skeleton (479). [Pg.96]

Starting from the Ni mrao-formyloctaethylporphyrin oxime complex, the meso-cyanooctaethylporphyrin N-oxide complex has been synthesized for the first time. The double addition of the nitrile oxide to 2,5-norbornadiene afford a porphyrin dimer, whose structure has been established by X-ray diffraction analysis (485). The 1,3-dipolar cycloaddition reaction of w< .so-tetraarylporphyrins with 2,6-dichlorobenzonitrile oxide yields isoxazoline-fused chlorins and stereoiso-metric bacteriochlorins. The crystal structure of one of bacteriochlorins has been characterized by X-ray diffraction (486, 487). [Pg.98]

An efficient synthetic route to (10Z)- and (10 )-19-lluoro-la,25-dihydroxy vitamin D3 has been developed (488). The key feature of this pathway is the introduction of a 19-fluoromethylene group to a (5 )-19-nor-10-oxo-vitamin D derivative. The 10-oxo compound 445 has been obtained via a 1,3-dipolar cycloaddition reaction of (5 )-la,25-dihydroxyvitamin D with in situ generated nitrile oxide, followed by ring cleavage of the formed isoxazoline moiety with molybdenum hexacarbonyl. Conversion of the keto group of (5 )-19-nor-10-oxo-vitamin D to the E and Z fluoromethylene group has been achieved via a two-step sequence, involving a reaction of lithiofluoromethyl phenyl sulfone, followed by the reductive de-sulfonylation of the u-lluoro-j3-hydroxysulfone. The dye-sensitized photoisomerization of the (5 )-19-fluorovitamin D affords the desired (5Z)-19-fluorovitamin D derivatives, (10Z)- and (10 )-19-fluoro-la,25-dihydroxy-vitamin D3. [Pg.98]

Zecchi and co-workers also reported 1,3-dipolar cycloadditions with nitrogen-substituted allenes. As illustrated in Scheme 8.75, the expected isoxazoline derivatives 285 were obtained by [3 + 2] cycloaddition reaction of aminoallenes 246 and nitrile oxide 284 [141, 142], Bis-adducts 286 became the major products when 2equiv. of nitrile oxide 284 were applied with prolonged reaction times. [Pg.473]

As part of an extensive study of the 1,3-dipolar cycloadditions of cyclic nitrones, Ali et al. (392-397) found that the reaction of the 1,4-oxazine 349 with various dipolarophiles afforded the expected isoxazolidinyloxazine adducts (Scheme 1.78) (398). In line with earlier results (399,400), oxidation of styrene-derived adduct 350 with m-CPBA facilitated N—O cleavage and further oxidation as above to afford a mixture of three compounds, an inseparable mixture of ketonitrone 351 and bicyclic hydroxylamine 352, along with aldonitrone 353 with a solvent-dependent ratio (401). These workers have prepared the analogous nitrones based on the 1,3-oxazine ring by oxidative cleavage of isoxazolidines to afford the hydroxylamine followed by a second oxidation with benzoquinone or Hg(ll) oxide (402-404). These dipoles, along with a more recently reported pyrazine nitrone (405), were aU used in successful cycloaddition reactions with alkenes. Elsewhere, the synthesis and cycloaddition reactions of related pyrazine-3-one nitrone 354 (406,407) or a benzoxazine-3-one dipolarophile 355 (408) have been reported. These workers have also reported the use of isoxazoles with an exocychc alkene in the preparation of spiro[isoxazolidine-5,4 -isoxazolines] (409). [Pg.61]

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

Dipolar cycloaddition reactions between nitrile oxides and aUcenes produce 2-isoxazolines. Through reductive cleavage of the N—O bond of the 2-isoxazohnes, the resulting heterocycles can be readily transformed into a variety of important synthetic intermediates such as p-hydroxy ketones (aldols), p-hydroxy esters, a,p-unsaturated carbonyl compounds, y-amino alcohols, imino ketones and so forth (7-12). [Pg.779]

An isoxazoline intermediate generated by the intramolecular [3 + 2] dipolar cycloaddition reaction of a nitrile oxide has served as a valuable intermediate in the preparation of biotin... [Pg.458]


See other pages where Isoxazolines cycloaddition reactions is mentioned: [Pg.90]    [Pg.236]    [Pg.534]    [Pg.551]    [Pg.269]    [Pg.20]    [Pg.20]    [Pg.26]    [Pg.61]    [Pg.86]    [Pg.374]    [Pg.211]    [Pg.463]    [Pg.258]    [Pg.781]    [Pg.784]    [Pg.791]    [Pg.268]    [Pg.90]    [Pg.628]    [Pg.631]    [Pg.638]   
See also in sourсe #XX -- [ Pg.410 ]




SEARCH



2-Isoxazoline, cycloaddition

Isoxazoline

Isoxazolines

© 2024 chempedia.info