Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition enantioselective Lewis

The complex obtained from commercially available chiral a-amino acids (AA) with Cu + ion induces asymmetry in the Diels-Alder reaction of 31 (R = H) with 32. By using 10% Cu(II)-AA (AA = L-abrine) the cycloaddition occurs e/iJo-stereoselectively in 48 h at 0°C with high yield and with acceptable enantioselectivity ee = 1A%). This is the first example of enantioselective Lewis-acid catalysis of an organic reaction in water [9b]. [Pg.266]

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

The enantioselective Lewis-acid-promoted 2 -t- 2-cycloaddition of trifluoropyruvate with various alkynes produced stable oxetene derivatives for use in the synthesis of pharmaceuticals and agrochemicals. l,4-diazabicyclo[2.2.2]octane (DABCO)-catalysed 2- -2-cycloaddition of allenoates and trifluoromethylketones produced 2-alkyleneoxetanes in good yields and with good diastereo-selectivities dr > 20 1). A cinchona alkaloid (20) catalysed the 2- -2-cycloaddition between tV-sulfonylimines and alkyl 2,3-butadienoates to form / -configured 2,4-disubstituted azetidines in high yields and with high enantioselectivities. ... [Pg.450]

S.2.2 Inverse Electron Demand Cycloaddition Chiral Lewis acid-catalyzed asymmetric cycloaddition reactions of carbonyl yhdes with electron-dehcient dipolarophiles described up to this point could be clas sified by the reaction controlled by the strongest interaction between highest occupied molecular orbital (HOMO) of the carbonyl ylides and LUMO of the dipolarophiles. It is known that inverse electron demand type cycloadditions of carbonyl ylides, which are controlled by the strongest interaction between the dipolarophile HOMO and the carbonyl ylide LUMO, also occur. In 2007, Suga et al. also reported that high enantioselectivities were obtained for the inverse electron... [Pg.200]

The main strategy for catalytic enantioselective cycloaddition reactions of carbonyl compounds is the use of a chiral Lewis acid catalyst. This approach is probably the most efficient and economic way to effect an enantioselective reaction, because it allows the direct formation of chiral compounds from achiral substrates under mild conditions and requires a sub-stoichiometric amount of chiral material. [Pg.151]

To achieve catalytic enantioselective cycloaddition reactions of carbonyl compounds, coordination of a chiral Lewis acid to the carbonyl functionality is necessary. This coordination activates the substrate and provides the chiral environment that forces the approach of a diene to the substrate from the less sterically hindered face, introducing enantioselectivity into the reaction. [Pg.152]

The catalytic enantioselective cycloaddition reaction of carbonyl compounds with conjugated dienes has been in intensive development in recent years with the main focus on synthetic aspects the number of mechanistic studies has been limited. This chapter will focus on the development and understanding of cycloaddition reactions of carbonyl compounds with chiral Lewis acid catalysts for the preparation of optically active six-membered ring systems. [Pg.152]

Chiral boron(III) Lewis acid catalysts have also been used for enantioselective cycloaddition reactions of carbonyl compounds [17]. The chiral acyloxylborane catalysts 9a-9d, which are also efficient catalysts for asymmetric Diels-Alder reactions [17, 18], can also catalyze highly enantioselective cycloaddition reactions of aldehydes with activated dienes. The arylboron catalysts 9b-9c which are air- and moisture-stable have been shown by Yamamoto et al. to induce excellent chiral induction in the cycloaddition reaction between, e.g., benzaldehyde and Danishefsky s dienes such as 2b with up to 95% yield and 97% ee of the cycloaddition product CIS-3b (Scheme 4.9) [17]. [Pg.159]

A simple approach for the formation of 2-substituted 3,4-dihydro-2H-pyrans, which are useful precursors for natural products such as optically active carbohydrates, is the catalytic enantioselective cycloaddition reaction of a,/ -unsaturated carbonyl compounds with electron-rich alkenes. This is an inverse electron-demand cycloaddition reaction which is controlled by a dominant interaction between the LUMO of the 1-oxa-1,3-butadiene and the HOMO of the alkene (Scheme 4.2, right). This is usually a concerted non-synchronous reaction with retention of the configuration of the die-nophile and results in normally high regioselectivity, which in the presence of Lewis acids is improved and, furthermore, also increases the reaction rate. [Pg.178]

The inverse electron-demand catalytic enantioselective cycloaddition reaction has not been investigated to any great extent. Tietze et al. published the first example of this class of reaction in 1992 - an intramolecular cycloaddition of heterodiene 42 catalyzed by a diacetone glucose derived-titanium(IV) Lewis acid 44 to give the cis product 43 in good yield and up to 88% ee (Scheme 4.31) [46]. [Pg.178]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

For the activation of a substrate such as 19a via coordination of the two carbonyl oxygen atoms to the metal, one should expect that a hard Lewis acid would be more suitable, since the carbonyl oxygens are hard Lewis bases. Nevertheless, Fu-rukawa et al. succeeded in applying the relative soft metal palladium as catalyst for the 1,3-dipolar cycloaddition reaction between 1 and 19a (Scheme 6.36) [79, 80]. They applied the dicationic Pd-BINAP 54 as the catalyst, and whereas this type of catalytic reactions is often carried out at rt or at 0°C, the reactions catalyzed by 54 required heating at 40 °C in order to proceed. In most cases mixtures of endo-21 and exo-21 were obtained, however, high enantioselectivity of up to 93% were obtained for reactions of some derivatives of 1. [Pg.237]

Associated to copper(II) pre-catalysts, bis(oxazolines) also allowed the asymmetric Diels-Alder and hetero Diels-Alder transformations to be achieved in nearly quantitative yield and high diastereo- and enantioselectivities. Optically active sulfoximines, with their nitrogen-coordinating site located at close proximity to the stereogenic sulfur atom, have also proven their efficiency as copper ligands for these asymmetric cycloadditions. Other precursors for this Lewis acid-catalyzed transformation have been described (e.g., zinc salts, ruthenium derivatives, or rare earth complexes) which, when associated to bis(oxazolines), pyridine-oxazolines or pyridine-bis(oxazolines), led to efficient catalysts. [Pg.94]

Other reactions not described here are formal [3 -i- 2] cycloadditions of a,p-unsaturated acyl-fluorides with allylsilanes [116], or the desymmetrization of meso epoxides [117]. For many of the reactions shown above, the planar chiral Fe-sandwich complexes are the first catalysts allowing for broad substrate scope in combination with high enantioselectivities and yields. Clearly, these milestones in asymmetric Lewis-base catalysis are stimulating the still ongoing design of improved catalysts. [Pg.170]

The highly ordered cyclic TS of the D-A reaction permits design of diastereo-or enantioselective reactions. (See Section 2.4 of Part A to review the principles of diastereoselectivity and enantioselectivity.) One way to achieve this is to install a chiral auxiliary.80 The cycloaddition proceeds to give two diastereomeric products that can be separated and purified. Because of the lower temperature required and the greater stereoselectivity observed in Lewis acid-catalyzed reactions, the best diastereoselectivity is observed in catalyzed reactions. Several chiral auxiliaries that are capable of high levels of diastereoselectivity have been developed. Chiral esters and amides of acrylic acid are particularly useful because the auxiliary can be recovered by hydrolysis of the purified adduct to give the enantiomerically pure carboxylic acid. Early examples involved acryloyl esters of chiral alcohols, including lactates and mandelates. Esters of the lactone of 2,4-dihydroxy-3,3-dimethylbutanoic acid (pantolactone) have also proven useful. [Pg.499]

As with D-A reactions, it is possible to achieve enantioselective cycloaddition in the presence of chiral catalysts.156 Many of the catalysts are similar to those used in enantioselective D-A reactions. The catalysis usually results from a lowering of the LUMO energy of the dipolarophile, which is analogous to the Lewis acid catalysis of D-A reactions. The more organized TS, incorporating a metal ion and associated... [Pg.536]

Scheme 6.7 shows some other examples of enantioselective catalysts. Entry 1 illustrates the use of a Co(III) complex, with the chirality derived from the diamine ligand. Entry 2 is a silver-catalyzed cycloaddition involving generation of an azome-thine ylide. The ferrocenylphosphine groups provide a chiral environment by coordination of the catalytic Ag+ ion. Entries 3 and 4 show typical Lewis acid catalysts in reactions in which nitrones are the electrophilic component. [Pg.538]

This procedure describes the preparation and application of an effective chiral catalyst for the enantioselective Diels-Alder reaction.11 The catalyst is derived from optically active 1,2-diphenylethylenediamine, the preparation of which (either antipode) was described in the preceding procedure. The aluminum-based Lewis acid also catalyzes the cycloaddition of crotonoyl oxazolidinones with cyclopentadiene,11 and acryloyl derivatives with benzyloxymethylene-cyclopentadiene. The latter reaction leads to optically pure intermediates for synthesis of prostaglandins.11... [Pg.19]

The 1,3-dipolar cycloaddition of nitrones to vinyl ethers is accelerated by Ti(IV) species. The efficiency of the catalyst depends on its complexation capacity. The use of Ti( PrO)2Cl2 favors the formation of trans cycloadducts, presumably, via an endo bidentate complex, in which the metal atom is simultaneously coordinated to the vinyl ether and to the cyclic nitrone or to the Z-isomer of the acyclic nitrones (800a). Highly diastereo- and enantioselective 1,3-dipolar cycloaddition reactions of nitrones with alkenes, catalyzed by chiral polybi-naphtyl Lewis acids, have been developed. Isoxazolidines with up to 99% ee were obtained. The chiral polymer ligand influences the stereoselectivity to the same extent as its monomeric version, but has the advantage of easy recovery and reuse (800b). [Pg.358]

The Lewis acid catalyst 53 is now referred to as the Narasaka catalyst. This catalyst can be generated in situ from the reaction of dichlorodiisopropoxy-titanium and a diol chiral ligand derived from tartaric acid. This compound can also catalyze [2+2] cycloaddition reactions with high enantioselectivity. For example, as depicted in Scheme 5-20, in the reaction of alkenes bearing al-kylthio groups (ketene dithioacetals, alkenyl sulfides, and alkynyl sulfides) with electron-deficient olefins, the corresponding cyclobutane or methylenecyclobu-tene derivatives can be obtained in high enantiomeric excess.18... [Pg.281]

A more practical BLA has been designed to improve the scope of dienophiles in reactions with less reactive dienes. 3,5-Bis(trifluromethyl)-phenylboronic acid (80) was chosen as the Lewis acidic metal component in the new BLAs 77-79. These new BLAs show higher catalytic activity in enantioselective cycloaddition of both a-substituted and a-unsubstituted a,/ -enal with various dienes. [Pg.286]

Finally, the catalytic enantioselective 1,3-dipolar cycloaddition reaction has recently been developed to be a highly selective reaction of nitrones with electron-deficient alkenes activated by chiral Lewis acids. High levels of regio-, diastereo-, and enantioselectivities can now be reached using catalysts 89 <2000JOC9080>, 90 <2002JA4968>, or 91 <2005JA13386> (Scheme 29). [Pg.433]


See other pages where Cycloaddition enantioselective Lewis is mentioned: [Pg.271]    [Pg.196]    [Pg.563]    [Pg.151]    [Pg.164]    [Pg.174]    [Pg.175]    [Pg.232]    [Pg.248]    [Pg.249]    [Pg.270]    [Pg.285]    [Pg.311]    [Pg.1065]    [Pg.184]    [Pg.298]    [Pg.300]    [Pg.257]    [Pg.413]    [Pg.591]    [Pg.127]    [Pg.250]    [Pg.252]    [Pg.25]    [Pg.84]    [Pg.396]    [Pg.1]   


SEARCH



Cycloaddition enantioselective

Enantioselectivity 2+2] cycloadditions

© 2024 chempedia.info