Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition, Inverse electron demand

Pyridazine carboxylates and dicarboxylates undergo cycloaddition reactions with unsaturated compounds with inverse electron demand to afford substituted pyridines and benzenes respectively (Scheme 45). [Pg.31]

Most reactions discussed can be classified into two types of [n s+iAs cycloadditions, the normal and inverse electron-demand cycloaddition reactions, based on the relative energies of the frontier molecular orbitals of the diene and the dieno-phile (Scheme 4.2) [4]. [Pg.152]

The normal electron-demand reaction is a HOMOdiene-LUMOdienophUeelectron-rich dienes and electron-deficient dienophiles (Scheme 4.2, left dotted line). The inverse electron-demand cycloaddition reaction is primarily controlled by a LUMOdiene HOMOdienophiie inter-... [Pg.152]

INVERSE-ELECTRON DEMAND LUMO(jjend dienephile controliGd cycloaddition reactions... [Pg.153]

A simple approach for the formation of 2-substituted 3,4-dihydro-2H-pyrans, which are useful precursors for natural products such as optically active carbohydrates, is the catalytic enantioselective cycloaddition reaction of a,/ -unsaturated carbonyl compounds with electron-rich alkenes. This is an inverse electron-demand cycloaddition reaction which is controlled by a dominant interaction between the LUMO of the 1-oxa-1,3-butadiene and the HOMO of the alkene (Scheme 4.2, right). This is usually a concerted non-synchronous reaction with retention of the configuration of the die-nophile and results in normally high regioselectivity, which in the presence of Lewis acids is improved and, furthermore, also increases the reaction rate. [Pg.178]

The inverse electron-demand catalytic enantioselective cycloaddition reaction has not been investigated to any great extent. Tietze et al. published the first example of this class of reaction in 1992 - an intramolecular cycloaddition of heterodiene 42 catalyzed by a diacetone glucose derived-titanium(IV) Lewis acid 44 to give the cis product 43 in good yield and up to 88% ee (Scheme 4.31) [46]. [Pg.178]

Our development of the catalytic enantioselective inverse electron-demand cycloaddition reaction [49], which was followed by related papers by Evans et al. [38, 48], focused in the initial phase on the reaction of mainly / , y-unsaturated a-keto esters 53 with ethyl vinyl ether 46a and 2,3-dihydrofuran 50a (Scheme 4.34). [Pg.179]

The absolute configuration of products obtained in the highly stereoselective cycloaddition reactions with inverse electron-demand catalyzed by the t-Bu-BOX-Cu(II) complex can also be accounted for by a square-planar geometry at the cop-per(II) center. A square-planar intermediate is supported by the X-ray structure of the hydrolyzed enone bound to the chiral BOX-copper(II) catalyst, shown as 29b in Scheme 4.24. [Pg.181]

The inverse electron-demand 1,3-dlpolar cycloaddition reaction... [Pg.215]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

As for boron catalysts, the aluminum catalysts have exclusively been applied for the inverse electron-demand 1,3-dipolar cycloaddition between alkenes and nitrones. The first contribution to this field was published by j0rgensen et al. in... [Pg.219]

A quite different type of titanium catalyst has been used in an inverse electron-demand 1,3-dipolar cycloaddition. Bosnich et al. applied the chiral titanocene-(OTf)2 complex 32 for the 1,3-dipolar cycloaddition between the cyclic nitrone 14a and the ketene acetal 2c (Scheme 6.25). The reaction only proceeded in the presence of the catalyst and a good cis/trans ratio of 8 92 was obtained using catalyst 32, however, only 14% ee was observed for the major isomer [70]. [Pg.231]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

Furukawa et al. also applied the above described palladium catalyst to the inverse electron-demand 1,3-dipolar cycloaddition of nitrones with vinyl ethers. However, all products obtained in this manner were racemic [81]. [Pg.238]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

Honk et al. concluded that this FMO model imply increased asynchronicity in the bond-making processes, and if first-order effects (electrostatic interactions) were also considered, a two-step mechanisms, with cationic intermediates become possible in some cases. It was stated that the model proposed here shows that the phenomena generally observed on catalysis can be explained by the concerted mechanism, and allows predictions of the effect of Lewis acid on the rates, regioselectivity, and stereoselectivity of all concerted cycloadditions, including those of ketenes, 1,3-dipoles, and Diels-Alder reactions with inverse electron-demand [2],... [Pg.305]

In an investigation by Yamabe et al. [9] of the fine tuning of the [4-1-2] and [2-1-4] cycloaddition reaction of acrolein with butadiene catalyzed by BF3 and AICI3 using a larger basis set and more sophisticated calculations, the different reaction paths were also studied. The activation energy for the uncatalyzed reaction were calculated to be 17.52 and 16.80 kcal mol for the exo and endo transition states, respectively, and is close to the experimental values for s-trans-acrolein. For the BF3-catalyzed reaction the transition-state energies were calculated to be 10.87 and 6.09 kcal mol , for the exo- and endo-reaction paths, respectively [9]. The calculated transition-state structures for this reaction are very asynchronous and similar to those obtained by Houk et al. The endo-reaction path for the BF3-catalyzed reaction indicates that an inverse electron-demand C3-0 bond formation (2.635 A... [Pg.307]

The final class of reactions to be considered will be the [4 + 2]-cycloaddition reaction of nitroalkenes with alkenes which in principle can be considered as an inverse electron-demand hetero-Diels-Alder reaction. Domingo et al. have studied the influence of reactant polarity on the reaction course of this type of reactions using DFT calculation in order to understand the regio- and stereoselectivity for the reaction, and the role of Lewis acid catalysis [29]. The reaction of e.g. ni-troethene 15 with an electron-rich alkene 16 can take place in four different ways and the four different transition-state structures are depicted in Fig. 8.16. [Pg.320]

The other catalytic approach to the 1,3-dipolar cycloaddition reaction is the inverse electron-demand (Fig. 8.17, right), in which the nitrone is coordinated to the Lewis acid, which for the reaction in Scheme 8.7 was found to be deactivated compared to the uncatalyzed reaction. In order for a 1,3-dipolar cycloaddition to proceed under these restrictions the alkene should be substituted with electron-donating substituents. [Pg.323]

Interestingly, in the inverse-electron-demand Diels-Alder reactions of oxepin with various enophiles such as cyclopentadienones and tetrazines the oxepin form, rather than the benzene oxide, undergoes the cycloaddition.234 236 Usually, the central C-C double bond acts as dienophile. Oxepin reacts with 2,5-dimethyl-3,4-diphenylcyclopenta-2,4-dienone to give the cycloadduct 6 across the 4,5-C-C double bond of the heterocycle.234 The adduct resists thermal carbon monoxide elimination but undergoes cycloreversion to oxepin and the cyclopenta-dienone.234... [Pg.52]

The inverse electron demand Diels-Alder [4 + 2] cycloadditions of methyl 1,2,4-triazine-3-carb-oxylates 36 (cf. Section B.2.2.) with cyclopropene followed by loss of nitrogen from the unstable cycloadducts 37 provide useful access to 4//-azepine-2-carboxylates 38.83-85... [Pg.123]

The inverse electron-demand Diels-Alder cycloaddition of ethyl l//-azepine-l-carboxylate (1) with dimethyl l,2,4,5-tetrazine-3,6-dicarboxylatc (36) yields the C4 —C5 adduct 37.266... [Pg.193]

Triazine (38) is ideal for inverse electron-demand Diels-Alder cycloadditions, for example, with azulene to give a l,4-bis(CF3)phthalazine (89CB711). A rare example of the synthesis of a five-membered heterocycle originating from [4 + 1] cycloaddition followed by [4 + 2] cycloreversion was reported using (38). The intermediate tetraazanorbomadienimine (39) is highly strained and eliminates N2 [82AG(E)284]. [Pg.23]

V-Acyliminium ions act as dienophiles in [4 + 2] cycloaddition reactions with conjugated dienes13, while A-acylimimum ions that (can) adopt an x-cis conformation are able to act as heterodienes in an inverse electron demand Diels-Alder process with alkenes or alkynes3 (see Section D. 1.6.1.1.). [Pg.804]

Racemic pyrone sulfoxide 52 undergoes a diastereoselective inverse-electron-demand 2 + 4-cycloaddition with 1,1-dimethoxyethylene to afford adduct 53 in > 95% yield (equation 49)100 this is the first example of an asymmetric Diels-Alder cycloaddition using a sulfinyldiene as an electron-deficient enophile101. [Pg.845]

Intermolecular [4C+2S] cycloaddition reactions where the diene moiety is contained in the carbene complex are less frequent than the [4S+2C] cycloadditions summarised in the previous section. However, 2-butadienylcarbene complexes, generated by a [2+2]/cyclobutene ring opening sequence, undergo Diels-Alder reactions with typical dienophiles [34,35] (Scheme 59). Also, Wulff et al. have described the application of pyranylidene complexes, obtained by a [3+3] cycloaddition reaction (see Sect. 2.8.1), in the inverse-electron-demand Diels-Alder reaction with enol ethers and enamines [87a]. Later, this strategy was applied to the synthesis of steroid-like ring skeletons [87b] (Scheme 59). [Pg.99]

Lewis-acid catalyzed inverse electron-demand Diels-Alder reactions between conjugated carbonyl compounds and simple alkenes and enolethers also allow dihydropyranes to be prepared. SnCU-Catalyzed cycloaddition of... [Pg.123]

Inverse electron-demand Diels-Alder reaction of (E)-2-oxo-l-phenylsulfo-nyl-3-alkenes 81 with enolethers, catalyzed by a chiral titanium-based catalyst, afforded substituted dihydro pyranes (Equation 3.27) in excellent yields and with moderate to high levels of enantioselection [81]. The enantioselectivity is dependent on the bulkiness of the Ri group of the dienophile, and the best result was obtained when Ri was an isopropyl group. Better reaction yields and enantioselectivity [82, 83] were attained in the synthesis of substituted chiral pyranes by cycloaddition of heterodienes 82 with cyclic and acyclic enolethers, catalyzed by C2-symmetric chiral Cu(II) complexes 83 (Scheme 3.16). [Pg.124]

Whereas electronically activated 2-pyrones can react thermally in both normal and inverse electron-demand Diels-Alder cycloaddition, 2-pyrone by itself requires thermal conditions that are so vigorous that they cause spontaneous extrusion of carbon dioxide from the bicyclic cycloadduct [61]. [Pg.234]

Lee L., Snyder J. K. Indole As a Dienophile in Inverse Electron Demand Diels-Alder and Related Reactions Adv. Cycloaddit. 1999 6 119-171... [Pg.304]

Posner G. H., Anjeh T. E. N., Carry J. C., French A. N. A New and Efficient Asymmetric Synthesis of an A-Ring Precursor to Physiologically Active 1-a-Hydroxyvitamin D3 Steroids Proc. - NOBCChE 1994 21 383-389 Keywords inverse electron-demand Diels-Alder cycloadditions, (S)-lactate and Lewis acids (-)-Pr(hfc)3 with benzyl vinyl ether... [Pg.317]

Diels-Alder cycloadditions involving norbomene 57 [34], benzonorbomene (83), 7-isopropylidenenorbomadiene and 7-isopropylidenebenzonorbomadiene (84) as dienophiles are characterized as inverse-electron-demand Diels-Alder reactions [161,162], These compounds react with electron-deficient dienes, such as tropone. In the inverse-electron-demand Diels-Alder reaction, orbital interaction between the HOMO of the dienophile and the LUMO of the diene is important. Thus, orbital unsymmetrization of the olefin it orbital of norbomene (57) is assumed to be involved in these top selectivities in the Diels-Alder cycloaddition. [Pg.163]

The inverse electron demand Diels-Alder reaction of 3-substituted indoles with 1,2,4-triazines and 1,2,4,5-tetrazines proceeds in excellent yields both inter- and intramolecularly. The cycloaddition of tryptophan 124 with a tethered 1,2,4-triazine produced a diastereomerically pure cycloadduct 125 <96TL5061>. [Pg.111]

A one-step synthesis of pyrazolo[3,4-tris(ethoxycarbonyl)-l,3,5-triazineand5-aminopyrazoles involving loss... [Pg.272]


See other pages where Cycloaddition, Inverse electron demand is mentioned: [Pg.153]    [Pg.170]    [Pg.181]    [Pg.183]    [Pg.214]    [Pg.302]    [Pg.322]    [Pg.323]    [Pg.325]    [Pg.3]    [Pg.109]    [Pg.216]    [Pg.235]   
See also in sourсe #XX -- [ Pg.566 ]




SEARCH



Demand electronics

Electron-demand

Electronic demand

Inverse electron demand

© 2024 chempedia.info