Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cuprous carbonate

Copper(I) carbonate (Cu + CO Cu Oj) is known as cuprous carbonate since coppers ion is +1 copper(II) carbonate (Cu + CO — CuCO ) is known as cupric carbonate, which is also known as the green copper mineral malachite, used in pigments, as an insecticide, as a cosmetic astringent, and as a plant fungicide to prevent smut. [Pg.113]

Cuprous carbonate.—Carles9 claims to have prepared cuprous carbonate as a glaucous green powder, insoluble in water, by the action of copper on copper carbonate in presence of liquefied ammonia. [Pg.271]

By passing a mixture of carbon monoxide and hydrogen chloride into the aromatic hydrocarbon in the presence of a mixture of cuprous chloride and aluminium chloride which acts as a catalyst (Gattermann - Koch reaction). The mixture of gases probably reacts as the equivalent of the unisolated acid chloride of formic acid (formyl chloride) ... [Pg.689]

In the presence of aluminum chloride and a small amount of cuprous haUde, a mixture of hydrogen chloride and carbon monoxide serves as a formyl a ting agent of aromatics (Gattermann-Koch reaction) (107) ... [Pg.559]

Propylene oxide is also produced in Hquid-phase homogeneous oxidation reactions using various molybdenum-containing catalysts (209,210), cuprous oxide (211), rhenium compounds (212), or an organomonovalent gold(I) complex (213). Whereas gas-phase oxidation of propylene on silver catalysts results primarily in propylene oxide, water, and carbon dioxide as products, the Hquid-phase oxidation of propylene results in an array of oxidation products, such as propylene oxide, acrolein, propylene glycol, acetone, acetaldehyde, and others. [Pg.141]

Iodized Salt. Iodized table salt has been used to provide supplemental iodine to the U.S. population since 1924, when producers, in cooperation with the Michigan State Medical Society (24), began a voluntary program of salt iodization in Michigan that ultimately led to the elimination of iodine deficiency in the United States. More than 50% of the table salt sold in the United States is iodized. Potassium iodide in table salt at levels of 0.006% to 0.01% KI is one of two sources of iodine for food-grade salt approved by the U.S. Food and Dmg Administration. The other, cuprous iodide, is not used by U.S. salt producers. Iodine may be added to a food so that the daily intake does not exceed 225 p.g for adults and children over four years of age. Potassium iodide is unstable under conditions of extreme moisture and temperature, particularly in an acid environment. Sodium carbonate or sodium bicarbonate is added to increase alkalinity, and sodium thiosulfate or dextrose is added to stabilize potassium iodide. Without a stabilizer, potassium iodide is oxidized to iodine and lost by volatilization from the product. Potassium iodate, far more stable than potassium iodide, is widely used in other parts of the world, but is not approved for use in the United States. [Pg.186]

Dimethyl carbonate [616-38-6] and dimethyl oxalate [553-90-2] are both obtained from carbon monoxide, oxygen, and methanol at 363 K and 10 MPa (100 atm) or less. The choice of catalyst is critical cuprous chloride (66) gives the carbonate (eq. 20) a palladium chloride—copper chloride mixture (67,68) gives the oxalate, (eq. 21). Anhydrous conditions should be maintained by removing product water to minimize the formation of by-product carbon dioxide. [Pg.53]

Copper—Liquor Scrubbing. Cuprous ammonium salts of organic acids form complexes with carbon monoxide. [Pg.54]

Because the solution is capable of absorbing one mole of carbon monoxide per mole of cuprous ion, it is desirable to maximize the copper content of the solution. The ammonia not only complexes with the cuprous ion to permit absorption but also increases the copper solubiUty and thereby permits an even greater carbon monoxide absorption capacity. The ammonia concentration is set by a balance between ammonia vapor pressure and solution acidity. Weak organic acids, eg, formic, acetic, and carbonic acid, are used because they are relatively noncorrosive and inexpensive. A typical formic acid... [Pg.54]

Gosorb Process. Like the copper—Hquor scmbbing method, the Cosorb process also reHes on the formation of a cuprous complex of carbon monoxide but uses a nonaqueous organic solvent. The preferred system uses a cuprous tetrachloroalurninate toluene complex in a toluene solvent (90). Many other organometaUic complex variants have been proposed (91—93) but have not been commercialized. [Pg.57]

The main advantages of the Cosorb process over the older copper ammonium salt process are low corrosion rate, abiHty to work in carbon dioxide atmospheres, and low energy consumption. The active CuAlCl C H CH complex is considerably more stable than the cuprous ammonium salt, and solvent toluene losses are much lower than the ammonia losses of the older process (94). [Pg.57]

Gas Phase. The gas-phase methanol hydrochlorination process is used more in Europe and Japan than in the United States, though there is a considerable body of Hterature available. The process is typicaHy carried out as foHows vaporized methanol and hydrogen chloride, mixed in equimolar proportions, are preheated to 180—200°C. Reaction occurs on passage through a converter packed with 1.68—2.38 mm (8—12 mesh) alumina gel at ca 350°C. The product gas is cooled, water-scmbbed, and Hquefied. Conversions of over 95% of the methanol are commonly obtained. Garnma-alurnina has been used as a catalyst at 295—340°C to obtain 97.8% yields of methyl chloride (25). Other catalysts may be used, eg, cuprous or zinc chloride on active alumina, carbon, sHica, or pumice (26—30) sHica—aluminas (31,32) zeoHtes (33) attapulgus clay (34) or carbon (35,36). Space velocities of up to 300 h , with volumes of gas at STP per hour per volume catalyst space, are employed. [Pg.514]

In some instances a carbon-carbon bond can be formed with C-nucleophiles. For example, 3-carboxamido-6-methylpyridazine is produced from 3-iodo-6-methylpyridazine by treatment with potassium cyanide in aqueous ethanol and l,3-dimethyl-6-oxo-l,6-dihydro-pyridazine-4-carboxylic acid from 4-chloro-l,3-dimethylpyridazin-6-(lH)-one by reaction with a mixture of cuprous chloride and potassium cyanide. Chloro-substituted pyridazines react with Grignard reagents. For example, 3,4,6-trichloropyridazine reacts with f-butyl-magnesium chloride to give 4-t-butyl-3,5,6-trichloro-l,4-dihydropyridazine (120) and 4,5-di-t-butyl-3,6-dichloro-l,4-dihydropyridazine (121) and both are converted into 4-t-butyl-3,6-dichloropyridazine (122 Scheme 38). [Pg.28]

Calcium carbonate has normal pH and inverse temperature solubilities. Hence, such deposits readily form as pH and water temperature rise. Copper carbonate can form beneath deposit accumulations, producing a friable bluish-white corrosion product (Fig. 4.17). Beneath the carbonate, sparkling, ruby-red cuprous oxide crystals will often be found on copper alloys (Fig. 4.18). The cuprous oxide is friable, as these crystals are small and do not readily cling to one another or other surfaces (Fig. 4.19). If chloride concentrations are high, a white copper chloride corrosion product may be present beneath the cuprous oxide layer. However, experience shows that copper chloride accumulation is usually slight relative to other corrosion product masses in most natural waters. [Pg.73]

Figure 4.18 As in Fig. 4.17 but with carbonate mound removed to reveal sparkling lavender cuprous oxide crystals. [Pg.83]

Terephthalic acid has been obtained from a great many /)-disubstituted derivatives of benzene or cyclohexane by oxidation with permanganate, chromic acid, or nitric acid. The following routes appear to have preparative value from />-toluic acid, />-methylacetophenone,2 or dihydro-/)-tolualdehyde by oxidation with permanganate from f>-cymene by oxidation with sodium dichromate and sulfuric acid from />-dibromobenzene or from /i-chloro- or -bromobenzoic acid by heating at 250° with potassium and cuprous cyanides and from />-dibromo-benzene, butyllithium, and carbon dioxide. ... [Pg.96]

House investigated the role of cuprous ions in the conjugate addition of organometallic reagents. He found that the catalytic effect can be explained by the intervention of a methyl copper derivative, which reacts rapidly with the carbon-carbon double bonds of the conjugated system. [Pg.55]

Benzaldehyde.—The aldehydes of the aromatic seiies may also be obtained by the oxidation of a methyl side-chain with chromium oxychloride. The solid brown product, C,H,.CH.)(CrO,CL)2, formed by adding C1O2CIJ to toluene, dissolved in carbon bisulphide, is decomposed with water, and benzaldehyde sepaiates out (Etard). Other methods for pie-paring aromatic aldehydes are (i) the Fiiedel-Crafts reaction, in which a mixture of carbon monoxide and hydrogen chloride aie passed into the hydrocaibon in presence of aluminium chloride and a little cuprous chloride,... [Pg.300]

Conjugate addition of methyl magnesium iodide in the presence of cuprous chloride to the enone (91) leads to the la-methyl product mesterolone (92) Although this is the thermodynamically unfavored axially disposed product, no possibility for isomerization exists in this case, since the ketone is once removed from this center. In an interesting synthesis of an oxa steroid, the enone (91) is first oxidized with lead tetraacetate the carbon at the 2 position is lost, affording the acid aldehyde. Reduction of this intermediate, also shown in the lactol form, with sodium borohydride affords the steroid lactone oxandrolone... [Pg.174]

Alternatively, as described in U.S. Patent 3,341,557, 6-dehydro-17-methyltestosterone may be used as the starting material. A mixture of 0.4 g of cuprous chloride, 20 ml of 4 M methylmagnesium bromide in ether and 60 ml of redistilled tetrahydrofuran was stirred and cooled in an ice bath during the addition of a mixture of 2.0 g of 6-dehydro-l 7-methyl-testosterone, 60 ml of redistilled tetrahydrofuran and 0.2 g of cuprous chloride. The ice bath was removed and stirring was continued for four hours. Ice and water were then carefully added, the solution acidified with 3N hydrochloric acid and extracted several times with ether. The combined ether extracts were washed with a brine-sodium carbonate solution, brine and then dried over anhydrous magnesium sulfate, filtered and then poured over a 75-g column of magnesium silicate (Florisil) packed wet with hexanes (Skellysolve B). The column was eluted with 250 ml of hexanes, 0.5 liter of 2% acetone, two liters of 4% acetone and 3.5 liters of 6% acetone in hexanes. [Pg.220]

As feed systems usually contain copper alloys, the use of amines for their protection may seem somewhat strange as copper is prone to attack in ammonia/carbon dioxide/oxygen environments, with the formation of complex cupric or cuprous compounds. The requisite degree of protection can be achieved, however, by maintaining the concentrations strictly within the acceptable target range. [Pg.837]

Most of the iodine can be recovered as potassium iodide mixed with some potassium carbonate. A little cuprous iodide is also present. [Pg.118]


See other pages where Cuprous carbonate is mentioned: [Pg.13]    [Pg.144]    [Pg.213]    [Pg.119]    [Pg.13]    [Pg.144]    [Pg.213]    [Pg.119]    [Pg.608]    [Pg.697]    [Pg.759]    [Pg.18]    [Pg.425]    [Pg.425]    [Pg.397]    [Pg.466]    [Pg.341]    [Pg.160]    [Pg.58]    [Pg.514]    [Pg.682]    [Pg.215]    [Pg.217]    [Pg.189]    [Pg.73]    [Pg.7]    [Pg.145]    [Pg.753]    [Pg.185]    [Pg.173]    [Pg.243]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 ]




SEARCH



Cuprous

Cuprous chloride dimethyl carbonate

© 2024 chempedia.info