Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction cube

Interestingly, the Mo2S " 4 (Fig- 3f) core stmcture can be viewed as occupying six of the eight vertices of a distorted cube. Reaction of the dinuclear complexes having the Mo2S " 4 core with appropriate metal ions leads to the plaimed assembly of M2M02S4 thiocubane stmctures (19,20). When M = Co (Fig. 3h) the compounds are potential precursors for hydrodesulfurization catalysts (15). [Pg.471]

Another concept of packed bed microreactor systems are the Thales Nano continuous-flow reactors [96]. They are meant for hydrogenation (H-cube) and ozonolysis (0-cube) reactions. The catalyst is packed inside the reactor in a form of... [Pg.241]

One of the main uses of these wet cells is to investigate surface electrochemistry [94, 95]. In these experiments, a single-crystal surface is prepared by UFIV teclmiqiies and then transferred into an electrochemical cell. An electrochemical reaction is then run and characterized using cyclic voltaimnetry, with the sample itself being one of the electrodes. In order to be sure that the electrochemical measurements all involved the same crystal face, for some experiments a single-crystal cube was actually oriented and polished on all six sides Following surface modification by electrochemistry, the sample is returned to UFIV for... [Pg.314]

The cloudiness of ordinary ice cubes is caused by thousands of tiny air bubbles. Air dissolves in water, and tap water at 10°C can - and usually does - contain 0.0030 wt% of air. In order to follow what this air does when we make an ice cube, we need to look at the phase diagram for the HjO-air system (Fig. 4.9). As we cool our liquid solution of water -i- air the first change takes place at about -0.002°C when the composition line hits the liquidus line. At this temperature ice crystals will begin to form and, as the temperature is lowered still further, they will grow. By the time we reach the eutectic three-phase horizontal at -0.0024°C we will have 20 wt% ice (called primary ice) in our two-phase mixture, leaving 80 wt% liquid (Fig. 4.9). This liquid will contain the maximum possible amount of dissolved air (0.0038 wt%). As latent heat of freezing is removed at -0.0024°C the three-phase eutectic reaction of... [Pg.42]

In view of the facile oxidation of 10.13a-c it is not surprising that some metathetical reactions with metal halides result in redox behaviour. Interestingly, lithium halides disrupt the dimeric structures of 10.13a or 10.13c to give distorted cubes of the type 10.14, in which a molecule of the lithium halide is entrapped by a Ei2[E(N Bu)3] monomer. Similar structures are found for the MeEi, EiN3 and EiOCH=CH2 adducts of 10.13a. In the EiN3 adduct, the terminal... [Pg.195]

The other tetrahalides can all readily be made by direct reactions of the elements. Crystalline SeCU, TeCU and -SeBr4 are isotypic and the structural unit is a cubane-like tetramer of the same general type as [Me3Pt(/Z3-Cl)]4 (p. 1168). This is illustrated schematically for TeCU in Fig. 16.13d each Te is displaced outwards along a threefold axis and thus has a distorted octahedral environment. This can be visualized as resulting from repulsions due to the Te lone-pairs directed towards the cube centre and, in the limit, would result in the separation into... [Pg.772]

If reaction occurs equally at all faces of a cube [28,29] of edge a, then, after time t, the volume of reactant remaining is a cube of edge (a — 2kGt), thus... [Pg.60]

The decomposition kinetics of mercury fulminate [725] are significantly influenced by ageing, pre-irradiation and crushing these additional features of reaction facilitated interpretation of the observations and, in particular, the role of intergranular material in salt breakdown. Following a slow evolution of gas ( 0.1%) during the induction period, the accelerator process for the fresh salt obeyed the exponential law [eqn. (8)] when a < 0.35. The induction period for the aged salt was somewhat shorter and here the acceleratory process obeyed the cube law [eqn. (2), n = 3] and E = 113 kj mole-1. [Pg.166]

A two levels of full factorial experimental design with three independent variables were generated with one center point, which was repeated[3]. In this design, F/P molar ratio, Oh/P wt%, and reaction temperature were defined as independent variables, all receiving two values, a high and a low value. A cube like model was formed, with eight comers. One center point (repeated twice) was added to improve accuracy of the design. Every analysis results were treated as a dependent result in the statistical study. [Pg.869]

Preparation of the alcohol insoluble solids (AIS) The content of the can was drained and the carrot cubes were immediately frozen in hquid nitrogen, freeze-dried and milled. Carrot powder (ca. 10 g) was mixed with 200 ml 80% ethanol previously heated to 60°C. After filtration the residue was extracted with ethanol until the filtrate was colorless (5 times) and gave negative reaction with phenol-sulfuric acid test (Dubois et al., 1956). [Pg.497]

This study could be extended to the synthesis of iron nanoparticles. Using Fe[N(SiMe3)2]2 as precursor and a mixture of HDA and oleic acid, spherical nanoparticles are initially formed as in the case of cobalt. However, a thermal treatment at 150 °C in the presence of H2 leads to coalescence of the particles into cubic particles of 7 nm side length. Furthermore, these particles self-organize into cubic super-structures (cubes of cubes Fig. ) [79]. The nanoparticles are very air-sensitive but consist of zerovalent iron as evidenced by Mossbauer spectroscopy. The fact that the spherical particles present at the early stage of the reaction coalesce into rods in the case of cobalt and cubes in the case of iron is attributed to the crystal structure of the metal particles hep for cobalt, bcc for iron. [Pg.255]

Figure 8. Rate of carbon monoxide oxidation on calcined Pt cube monolayer as a function of temperature [27]. The square root of the SFG intensity as a function of time was fit with a first-order decay function to determine the rate of CO oxidation. Inset is an Arrhenius plot for the determination of the apparent activation energy by both SFG and gas chromatography. Reaction conditions were preadsorbed and 76 Torr O2 (flowing). (Reprinted from Ref. [27], 2006, with permission from American Chemical Society.)... Figure 8. Rate of carbon monoxide oxidation on calcined Pt cube monolayer as a function of temperature [27]. The square root of the SFG intensity as a function of time was fit with a first-order decay function to determine the rate of CO oxidation. Inset is an Arrhenius plot for the determination of the apparent activation energy by both SFG and gas chromatography. Reaction conditions were preadsorbed and 76 Torr O2 (flowing). (Reprinted from Ref. [27], 2006, with permission from American Chemical Society.)...

See other pages where Reaction cube is mentioned: [Pg.50]    [Pg.162]    [Pg.104]    [Pg.50]    [Pg.162]    [Pg.104]    [Pg.1040]    [Pg.210]    [Pg.472]    [Pg.443]    [Pg.39]    [Pg.385]    [Pg.327]    [Pg.456]    [Pg.378]    [Pg.454]    [Pg.436]    [Pg.464]    [Pg.649]    [Pg.389]    [Pg.58]    [Pg.752]    [Pg.14]    [Pg.22]    [Pg.27]    [Pg.36]    [Pg.44]    [Pg.87]    [Pg.153]    [Pg.312]    [Pg.47]    [Pg.1488]    [Pg.159]    [Pg.81]    [Pg.12]    [Pg.151]    [Pg.152]    [Pg.158]    [Pg.310]    [Pg.310]   
See also in sourсe #XX -- [ Pg.392 ]




SEARCH



Cubing

© 2024 chempedia.info