Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystals solid surfaces

Part 5 covers special structures such as liquid crystals, solid surfaces and mesoscopic and nanostructured materials. The chapter on liquid crystals covers physical properties of the most common liquid crystalline substances as well as some liquid crystalline mixtures. Data compiled in the chapter on solid surfaces refer to atomically clean and well characterized surfaces. The values reported are mainly averages from different authors where reference to the original papers is made. In the chapter on nanostructured materials emphasis is placed on size and confinement effects. The properties associated with electronic confinement are addressed and particular attention is drawn to semiconductor-doped matrices. The two main applications of nanostructured magnetic materials, spintronics and ultrahigh-density data storage media, are also treated. [Pg.1121]

Most solid surfaces are marred by small cracks, and it appears clear that it is often because of the presence of such surface imperfections that observed tensile strengths fall below the theoretical ones. For sodium chloride, the theoretical tensile strength is about 200 kg/mm [136], while that calculated from the work of cohesion would be 40 kg/mm [137], and actual breaking stresses are a hundreth or a thousandth of this, depending on the surface condition and crystal size. Coating the salt crystals with a saturated solution, causing surface deposition of small crystals to occur, resulted in a much lower tensile strength but not if the solution contained some urea. [Pg.281]

W. T. Read, Jr., Dislocations in Crystals, McGraw-Hill, New York, 1953. Solid Surfaces, ACS Symposium Series No. 33, American Chemical Society, Washington, DC, 1961. [Pg.287]

Electrons interact with solid surfaces by elastic and inelastic scattering, and these interactions are employed in electron spectroscopy. For example, electrons that elastically scatter will diffract from a single-crystal lattice. The diffraction pattern can be used as a means of stnictural detenuination, as in FEED. Electrons scatter inelastically by inducing electronic and vibrational excitations in the surface region. These losses fonu the basis of electron energy loss spectroscopy (EELS). An incident electron can also knock out an iimer-shell, or core, electron from an atom in the solid that will, in turn, initiate an Auger process. Electrons can also be used to induce stimulated desorption, as described in section Al.7.5.6. [Pg.305]

Our intention is to give a brief survey of advanced theoretical methods used to detennine the electronic and geometric stmcture of solids and surfaces. The electronic stmcture encompasses the energies and wavefunctions (and other properties derived from them) of the electronic states in solids, while the geometric stmcture refers to the equilibrium atomic positions. Quantities that can be derived from the electronic stmcture calculations include the electronic (electron energies, charge densities), vibrational (phonon spectra), stmctiiral (lattice constants, equilibrium stmctiires), mechanical (bulk moduli, elastic constants) and optical (absorption, transmission) properties of crystals. We will also report on teclmiques used to study solid surfaces, with particular examples drawn from chemisorption on transition metal surfaces. [Pg.2201]

Primary nucleation is the classical form of nucleation. It occurs mainly at high levels of supersaturation and is thus most prevalent during unseeded crystallization or precipitation. This mode of nucleation may be subdivided into either homogeneous viz. spontaneously from clear solution, or heterogeneous viz. in the presence of dust particles in suspension, or solid surfaces. [Pg.125]

Crystal growth is a diffusion and integration process, modified by the effect of the solid surfaces on which it occurs (Figure 5.3). Solute molecules/ions reach the growing faces of a crystal by diffusion through the liquid phase. At the surface, they must become organized into the space lattice through an... [Pg.125]

The significance of this novel attempt lies in the inclusion of both the additional particle co-ordinate and in a mechanism of particle disruption by primary particle attrition in the population balance. This formulation permits prediction of secondary particle characteristics, e.g. specific surface area expressed as surface area per unit volume or mass of crystal solid (i.e. m /m or m /kg). It can also account for the formation of bimodal particle size distributions, as are observed in many precipitation processes, for which special forms of size-dependent aggregation kernels have been proposed previously. [Pg.245]

One of the factors that influences the rate of dissolving of solid is the area, A, of the crystal surface that contacts the liquid. If many crystals (with large A) are dissolving simultaneously, the rate of dissolving is faster than if only a few crystals (with small A) are in the solvent. The rate of dissolving is proportional to this liquid-solid surface area, A. [Pg.164]

Table 26 shows some steps in the chronological sequence of compilations, which are evidently related to improvements in the preparation and control of electrode surfaces. In second order, the control of the cleanliness of the electrolyte solution has to be taken into consideration since its effect becomes more and more remarkable with solid surfaces. A transfer of emphasis can in fact be recognized from Hg (late 1800s) to sp-metals, to sd-metals, to single-crystal faces, to d-metals, although a sharp chronological separation cannot be made. [Pg.152]

Due to particles extrusion, crystal lattice deformation expands to the adjacent area, though the deformation strength reduces gradually (Figs. 10(a)-10(other hand, after impacting, the particle may retain to plow the surface for a short distance to exhaust the kinetic energy of the particle. As a result, parts of the free atoms break apart from the substrate and pile up as atom clusters before the particle. The observation is consistent with results of molecular dynamics simulation of the nanometric cutting of silicon [15] and collision of the nanoparticle with the solid surface [16]. [Pg.239]

When particle impacts with a solid surface, the atoms of the surface layer undergo crystal lattice deformation, and then form an atom pileup on the outlet of the impacted region. With the increase of the collision time, more craters present on the solid surface, and amorphous transition of silicon and a few crystal grains can be found in the subsurface. [Pg.239]

The importance of surface characterization in molecular architecture chemistry and engineering is obvious. Solid surfaces are becoming essential building blocks for constructing molecular architectures, as demonstrated in self-assembled monolayer formation [6] and alternate layer-by-layer adsorption [7]. Surface-induced structuring of liqnids is also well-known [8,9], which has implications for micro- and nano-technologies (i.e., liqnid crystal displays and micromachines). The virtue of the force measurement has been demonstrated, for example, in our report on novel molecular architectures (alcohol clusters) at solid-liquid interfaces [10]. [Pg.1]

There are relatively few examples of C-C bond formation on solid surfaces under UHV conditions. There are virtually no examples of catalytic C-C bond formation under such conditions. Perhaps the closest precedent for the present studies on reduced Ti02 can be found in the studies of Lambert et al. on single crystal Pd surfaces. Early UHV studies demonstrated that acetylene could be trimerized to benzene on the Pd(lll) surface in both TPD and modulated molecular beam experiments [9,10]. Subsequent studies by the same group and others [11,12] demonstrated that this reaction could be catalyzed at atmospheric pressure both by palladium single crystals and supported palladium catalysts. While it is not clear that catalysis was achieved in UHV, these and subsequent studies have provided valuable insights into the mechanism of this reaction as catalyzed by metals, including spectroscopic evidence for the hypothesized metallacyclopentadiene intermediates [10,13,14]. [Pg.298]

Adsorption is the preferential concentration of a species at the interface between two phases. Adsorption on solid surfaces is a very complex process and one that is not well understood. The surfaces of most heterogeneous catalysts are not uniform. Variations in energy, crystal structure, and chemical composition will occur as one moves about on the catalyst surface. In spite of this it is generally possible to divide all adsorption phenomena involving solid surfaces into two main classes physical adsorption and chemical adsorption (or chemisorption). Physical adsorption arises from intermolecular forces... [Pg.169]

The structures of the solid-melt interface and the melt confined within a narrow gap are of great significance in diverse areas of research such as lubrication, adhesion, or in future nanometer science. It is well recognized that the melt of n-alkanes, and other simple molecules show anomalous oscillations in density, viscosity, etc. vs. depth from the surface showing the presence of marked layer structures in the melt [40]. Even in polymer melts similar layering phenomena were suggested near the solid surface [41], but no pronounced ordering or the onset of crystallization were reported. [Pg.62]

The electron spin resonance (ESR) technique has been extensively used to study paramagnetic species that exist on various solid surfaces. These species may be supported metal ions, surface defects, or adsorbed molecules, ions, etc. Of course, each surface entity must have one or more unpaired electrons. In addition, other factors such as spin-spin interactions, the crystal field interaction, and the relaxation time will have a significant effect upon the spectrum. The extent of information obtainable from ESR data varies from a simple confirmation that an unknown paramagnetic species is present to a detailed description of the bonding and orientation of the surface complex. Of particular importance to the catalytic chemist... [Pg.265]

XPS and AES are now among the most often applied techniques in the characterization of solid surfaces [15]. UPS is a typical surface science method best suited for fundamental studies on single crystals. All three spectroscopies give surface sensitive information. [Pg.53]

DW Berreman, Solid surface shape and the alignment of an adjacent nematic liquid crystal, Phys. Rev. Lett., 28 1683-1686, 1972. [Pg.477]


See other pages where Crystals solid surfaces is mentioned: [Pg.450]    [Pg.31]    [Pg.450]    [Pg.31]    [Pg.283]    [Pg.303]    [Pg.309]    [Pg.2826]    [Pg.2903]    [Pg.74]    [Pg.442]    [Pg.2]    [Pg.71]    [Pg.260]    [Pg.311]    [Pg.185]    [Pg.1]    [Pg.8]    [Pg.559]    [Pg.204]    [Pg.29]    [Pg.183]    [Pg.262]    [Pg.300]    [Pg.145]    [Pg.30]    [Pg.64]    [Pg.466]    [Pg.158]    [Pg.132]    [Pg.16]   
See also in sourсe #XX -- [ Pg.790 , Pg.791 , Pg.792 , Pg.793 , Pg.794 ]




SEARCH



Solid surfaces crystal growth modification

Solids crystallization

© 2024 chempedia.info