Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystals heat conductivity

Black phosphorus is formed when white phosphorus is heated under very high pressure (12 000 atmospheres). Black phosphorus has a well-established corrugated sheet structure with each phos phorus atom bonded to three neighbours. The bonding lorces between layers are weak and give rise to flaky crystals which conduct electricity, properties similar to those ol graphite, it is less reactive than either white or red phosphorus. [Pg.210]

The heat conductivity in solids occurs via phonons. This conductivity is ideal in single crystals and is considerably reduced in porous solids, by one to two orders of magnitude. Therefore thermal insulation materials are built up of small particles which should touch each other at only a few points. This effect is of course enhanced by a low density of the material. [Pg.587]

The occurrence of kinetic instabilities as well as oscillatory and even chaotic temporal behavior of a catalytic reaction under steady-state flow conditions can be traced back to the nonlinear character of the differential equations describing the kinetics coupled to transport processes (diffusion and heat conductance). Studies with single crystal surfaces revealed the formation of a large wealth of concentration patterns of the adsorbates on mesoscopic (say pm) length scales which can be studied experimentally by suitable tools and theoretically within the framework of nonlinear dynamics. [31]... [Pg.66]

If crystal growth or dissolution or melting is controlled by diffusion or heat conduction, then the rate would be inversely proportional to square root of time (Stefan problem). It is necessary to solve the appropriate diffusion or heat conduction equation to obtain both the concentration profile and the crystal growth or dissolution or melting rate. Below is a summary of how to treat the problems more details can be found in Section 4.2. [Pg.356]

Melting of a single crystal in its own melt may be treated similarly if it is controlled by heat conduction. Assume that the melt reservoir is infinite. Because heat diffusivity k in the melt is about 6 orders of magnitude larger than mass... [Pg.389]

Many hypotheses for initiation of liquid expls have been proposed, of which Bowden et al (Refs 13, 14a 27) suggested adiabatic compression of gas bubbles Johansson et al (Ref 28) - vapor or droplet burning Andreev (Ref 29) - droplet formation or suspension behind a burning front is capable of causing a transition to detonation Bolkhovitinov (Ref 33a) - crystallization of the material under pressure Cook et al (Ref 34b) - initiation occurs with the development of a pressure-generated metallic state accompanied by a plasma that provides the postulated requirement of high heat conductivity... [Pg.406]

As a preliminary, ferric sulfate is made by the oxidation of ferrous sulfate. Dissolve 100 g. of ferrous sulfate in 100 cc. of boiling water, to which has been added before heating 10 cc. of sulfuric acid. Add concentrated nitric acid portionwise to the hot solution, until a diluted sample gives a reddish-brown (not black) precipitate with ammonia. This will require about 25 cc. Boil the solution down to a viscous liquid to get rid of excess nitric acid, dilute to about 400 cc., and add the calculated weight of ammonium sulfate. The crystallization is conducted as in the former exercise, preferably under 20°. By the addition of potassium sulfate, the corresponding potassium iron alum may be secured. In this case, it is necessary to concentrate the solution until there is about four parts of water to one of the hydrated alum and cool to about zero to secure crystallization. Both of these alums are amethyst in color, the potassium salt being much less stable and having a rather low transition point. [Pg.111]

The time evolution of a system may also be characterized according to the degree of perturbation from its equilibrium state. Linear theories hold if local equilibrium prevails, that is, each volume element of the non-equilibrium system can still be unambiguously defined by the usual set of (local) thermodynamic state variables. Often, a crystal is in (partial) equilibrium with respect to externally predetermined P and 7j but not with external component chemical potentials pik. Although P, T, and nk are all intensive functions of state, AP relaxes with sound velocity, A7 by heat conduction, and A/ik by matter transport. In solids, matter transport is normally much slower than the other modes of relaxation. [Pg.95]

The mechanisms of the motion of liquid/crystal interfaces during solidification were discussed in Section 12.3, and aspects of the heat-conduction-controlled motion of liquid/solid interfaces and their morphological stability under various solidification conditions were treated in Chapter 20. This sets the stage for considering the entire process of the solidification of a body of liquid into a solid. [Pg.543]

Lattice vibrations are fundamental for the understanding of several phenomena in solids, such as heat capacity, heat conduction, thermal expansion, and the Debye-Waller factor. To mathematically deal with lattice vibrations, the following procedure will be undertaken [7] the solid will be considered as a crystal lattice of atoms, behaving as a system of coupled harmonic oscillators. Thereafter, the normal oscillations of this system can be found, where the normal modes behave as uncoupled harmonic oscillators, and the number of normal vibration modes will be equal to the degrees of freedom of the crystal, that is, 3nM, where n is the number of atoms in the unit cell and M is the number of units cell in the crystal [8],... [Pg.10]

When crystals rub together, hotspots can form only through friction, as a result of the friction heat and the (in comparison to metals) low heat conductivity. [Pg.138]

Gradients of electric potential and pressure govern the behavior of ionic systems, selective membranes, and ultra-centrifuges. In electrokinetic phenomena, induced dipoles can cause separations, such as dielectrophoresis and magnetophoresis, which may be especially important in specialized separations. Diffusion potential is the interference between diffusion and electric conduction in an anisotropic crystal where heat conduction occurs in one direction caused by a temperature gradient in another direction. [Pg.91]

The existence of empty MOs close in energy to filled MOs explains the thermal and electrical conductivity of metal crystals. Metals conduct electricity and heat very efficiently because of the availability of highly mobile electrons. For example, when an electrical potential is placed across a strip of metal, for current to flow electrons must be free to move from the negative to the positive areas of the metal. In the band model for metals, mobile electrons are furnished when electrons in filled MOs are excited into empty ones. The conduction electrons are free to travel throughout the metal crystal as dictated by the potential imposed on the metal. The MOs occupied by these conducting electrons are called conduction bands. These mobile electrons also account for the efficiency of the conduction of heat through metals. When one end of a metal rod is heated, the mobile electrons can rapidly transmit the thermal energy to the other end. [Pg.784]

Condensed states of matter liquids and solids. (16.1) Conduction bands the molecular orbitals that can be occupied by mobile electrons, which are free to travel throughout a metal crystal to conduct electricity or heat. (16.4) Conjugate acid the species formed when a proton is added to a base. (7.1)... [Pg.1100]

The glue or bonding that holds atoms of metals close to each other is usually referred to as a metallic bond. It is formed because the outermost electrons of the metal atoms form a sort of sea of electrons as they move freely around the nuclei of all the metal atoms in the crystal.These mobile electrons are responsible for the electrical and heat conductivity of the metals. [Pg.401]


See other pages where Crystals heat conductivity is mentioned: [Pg.528]    [Pg.928]    [Pg.563]    [Pg.181]    [Pg.115]    [Pg.116]    [Pg.326]    [Pg.359]    [Pg.372]    [Pg.390]    [Pg.528]    [Pg.275]    [Pg.115]    [Pg.116]    [Pg.62]    [Pg.157]    [Pg.79]    [Pg.29]    [Pg.220]    [Pg.45]    [Pg.214]    [Pg.248]    [Pg.419]    [Pg.150]    [Pg.251]    [Pg.649]    [Pg.252]    [Pg.361]    [Pg.859]    [Pg.98]    [Pg.564]    [Pg.233]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Conduction heating

Conductive heating

Crystal growth heat conduction controlled

Crystals conductivity

Heat conductance

Heat conduction

Heat conductive

Heat crystallization

Quartz crystal microbalance/heat conduction

© 2024 chempedia.info