Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystals EXAFS

Figure 4 Structure of the oxygen-evolving complex of PS II as derived from single-crystal EXAFS (28) and X-ray scattering (3) data. The Mn, Ca, and O atoms of the OEC are shown in green, gray, and red, respectively, and have been determined by the best fit of a model consistent with the EXAFS data into the electron density map obtained by X-ray scattering experiments (28). Figure 4 Structure of the oxygen-evolving complex of PS II as derived from single-crystal EXAFS (28) and X-ray scattering (3) data. The Mn, Ca, and O atoms of the OEC are shown in green, gray, and red, respectively, and have been determined by the best fit of a model consistent with the EXAFS data into the electron density map obtained by X-ray scattering experiments (28).
Single crystal EXAFS studies have provided important structural information on the molybdenum site. For different crystal orientations (relative to the polarized x-ray beam), the amplitude of the Mo-Fe EXAFS changes by a factor of 2.5, but the Mo-S EXAFS changes only slightly. Analysis of the an-... [Pg.426]

EXAFS spectra of platinum metal, having a face-centred cubic crystal stmcture, have been obtained at 300 K and 673 K. Explain what qualitative differences you might expect. How many nearest-neighbour atoms are there in this stmcture Illustrate your answer with a diagram. [Pg.335]

The trimetaUic uranyl cluster (U02)3(C03) 3 has been the subject of a good deal of study, including nmr spectroscopy (179—182) solution x-ray diffraction (182), potentiometric titration (177,183,184), single crystal x-ray diffraction (180), and exafs spectroscopy in both the soHd and solution states (180). The data in this area have consistendy led to the proposal and verification of a trimeric (U02)3(C03) 3 cluster (181,182,185). [Pg.327]

The classical approach for determining the structures of crystalline materials is through diflfiaction methods, i.e.. X-ray, neutron-beam, and electron-beam techniques. Difiiaction data can be analyzed to yield the spatial arrangement of all the atoms in the crystal lattice. EXAFS provides a different approach to the analysis of atomic structure, based not on the diffraction of X rays by an array of atoms but rather upon the absorption of X rays by individual atoms in such an array. Herein lie the capabilities and limitations of EXAFS. [Pg.222]

Many of the compounds in higher oxidation states are reactive, and for moisture-sensitive solids that cannot be crystallized, some of the bond lengths quoted in Table 2.1 are from EXAFS measurements [24], Raman spectroscopy is likewise well suited to studying such reactive compounds, and vibrational data for halometallates are given in Table 2.2 trends illustrated include the decrease in frequency as the oxidation state of the metal decreases, and similarly a decrease in vibrational frequency, for a given oxidation state, with increasing mass of the halogen. [Pg.82]

X-ray absorption spectroscopy has been performed on the isolated Rieske protein from bovine heart mitochondrial bc complex 69) as well as on the Rieske-type cluster in Burkholderia cepacia phthalate dioxygenase (PDO) (72). The analysis performed by Powers et al. 69) was significantly hampered by the fact that the presence of two histidine ligands was not fully recognized therefore, only the results obtained with the dioxygenase where the mononuclear iron has been depleted will be considered here. Table VII gives a comparison of the distances obtained from the fit of the EXAFS spectra assuming an idealized Rieske model and of the distances in the crystal structures... [Pg.121]

Until then, the purification of the Fepr protein had been a laborous job as a 240-L batch yielded only as little as 5 mg of protein. With the overexpression clones of the Fepr proteins, the range of proteinconsuming studies such as Mossbauer spectroscopy, EXAFS, and, last but not least, crystallization experiments was greatly extended. Thus, several groups set off to systematically investigate the spectroscopic properties of both Fepr proteins, poised at all four (proposed) redox states. [Pg.230]

The ruthenium-copper and osmium-copper systems represent extreme cases in view of the very limited miscibility of either ruthenium or osmium with copper. It may also be noted that the crystal structure of ruthenium or osmium is different from that of copper, the former metals possessing the hep structure and the latter the fee structure. A system which is less extreme in these respects is the rhodium-copper system, since the components both possess the face centered cubic structure and also exhibit at least some miscibility at conditions of interest in catalysis. Recent EXAFS results from our group on rhodium-copper clusters (14) are similar to the earlier results on ruthenium-copper ( ) and osmium-copper (12) clusters, in that the rhodium atoms are coordinated predominantly to other rhodium atoms while the copper atoms are coordinated extensively to both copper and rhodium atoms. Also, we conclude that the copper concentrates in the surface of rhodium-copper clusters, as in the case of the ruthenium-copper and osmium-copper clusters. [Pg.261]

The extent to which small particles of Pd and Pt show evidence of oxidation after exposure to air Is also highly variable. It Is difficult to confirm the evidence of X-ray diffraction and EXAFS (25) that most particles In the 15-20A size range consist entirely of oxide. We have found that such particles usually give single crystal patterns attributable to the metals. There Is, however, considerable evidence that, in the case of Pt on alumina, the Pt crystals have a well-defined epitaxial relationship with the crystallites (20-50A diameter) of the nominally "amorphous" alumina substrate. [Pg.336]

According to EXAFS experiments, the number of oxygen atoms relative to metal atoms in the air-oxidized state is much higher in fine crystallites than in large crystals, so that their behavior approaches that of oxides. [Pg.539]

Spin-state transitions have been studied by the application of numerous physical techniques such as the measurement of magnetic susceptibility, optical and vibrational spectroscopy, the Fe-Mbssbauer effect, EPR, NMR, and EXAFS spectroscopy, the measurement of heat capacity, and others. Most of these studies have been adequately reviewed. The somewhat older surveys [3, 19] cover the complete field of spin-state transitions. Several more recent review articles [20, 21, 22, 23, 24, 25] have been devoted exclusively to spin-state transitions in compounds of iron(II). Two reviews [26, 27] have considered inter alia the available theoretical models of spin-state transitions. Of particular interest is the determination of the X-ray crystal structures of spin transition compounds at two or more temperatures thus approaching the structures of the pure HS and LS electronic isomers. A recent survey [6] concentrates particularly on these studies. [Pg.58]


See other pages where Crystals EXAFS is mentioned: [Pg.420]    [Pg.38]    [Pg.89]    [Pg.6]    [Pg.420]    [Pg.38]    [Pg.89]    [Pg.6]    [Pg.1791]    [Pg.331]    [Pg.139]    [Pg.383]    [Pg.196]    [Pg.211]    [Pg.223]    [Pg.234]    [Pg.65]    [Pg.142]    [Pg.85]    [Pg.602]    [Pg.114]    [Pg.115]    [Pg.374]    [Pg.3]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.69]    [Pg.400]    [Pg.122]    [Pg.145]    [Pg.27]    [Pg.109]    [Pg.219]    [Pg.288]    [Pg.407]    [Pg.136]    [Pg.11]    [Pg.21]    [Pg.253]    [Pg.259]   
See also in sourсe #XX -- [ Pg.63 , Pg.65 , Pg.66 ]




SEARCH



EXAFS

© 2024 chempedia.info