Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystallization drying the crystals

Introduce into a 4 cm beaker, 3 cm of distilled water, 2 g sodinm hydroxide and fresh boiling chips, heat to incipient boiling and add 675 g of AnalaR potassium sulfate. Adjust to pH 10 or higher by sodium hydroxide addition. Boil for 20 minutes to expel ammonia. Filter the boiling solution on a Buchner funnel throngh (previously hot water washed) Whatman No. 42 filter paper. Cool the filtrate to 5 °C and vacuum filter off the small uniform crystals. Dry the crystals in an air oven (yield 450 g). Allow to cool in a desiccator and store in well stoppered glass bottle. [Pg.104]

Then filter the remainder of the product at the pump, drain and dry. The glucosazone is thus obtained as bright yellow crystals, m.p. 204° with decomposition. [Pg.139]

In order to dry the crystals, the Buchner funnel is inverted over two or three thicknesses of drying paper (i.e., coarse-grained, smooth surfaced Alter paper) resting upon a pad of newspaper, and the crystalline cake is removed with the aid of a clean spatula several sheets of drying paper are placed on top and the crystals are pressed flrmly. If the sheets become too soiled by the mother liquor absorbed, the crystals should be transferred to fresh paper. The disadvantage of this method of rapid drying is that the recrystallised product is liable to become contaminated with the Alter paper flbre. [Pg.132]

Dissolve 2 5 g. of hydroxylamine hydrochloride and 4 g. of crystallised sodium acetate in 10 ml. of water in a small flask or in a test-tube. Warm the solution to about 40° and add 2 5 g. of cyclohexanone. Stopper the vessel securely with a cork and shake vigorously for a few minutes the oxime soon separates as a crystalline solid. Cool in ice, filter the crystals at the pump, and wash with a little cold water. RecrystaUise from light petroleum, b.p. 60-80°, and dry the crystals upon filter paper in the air. The yield of pure cycZohexanone oxime, m.p. 90°, is 2 -5 g. [Pg.343]

C. Fumaric acid from furfural. Place in a 1-litre three-necked flask, fitted with a reflux condenser, a mechanical stirrer and a thermometer, 112 5 g. of sodium chlorate, 250 ml. of water and 0 -5 g. of vanadium pentoxide catalyst (1), Set the stirrer in motion, heat the flask on an asbestos-centred wire gauze to 70-75°, and add 4 ml. of 50 g. (43 ml.) of technical furfural. As soon as the vigorous reaction commences (2) bvi not before, add the remainder of the furfural through a dropping funnel, inserted into the top of the condenser by means of a grooved cork, at such a rate that the vigorous reaction is maintained (25-30 minutes). Then heat the reaction mixture at 70-75° for 5-6 hours (3) and allow to stand overnight at the laboratory temperature. Filter the crystalline fumaric acid with suction, and wash it with a little cold water (4). Recrystallise the crude fumaric acid from about 300 ml. of iif-hydrochloric acid, and dry the crystals (26 g.) at 100°. The m.p. in a sealed capillary tube is 282-284°. A further recrystaUisation raises the m.p. to 286-287°. [Pg.463]

Method 1. Arrange the flask containing the reaction mixture for steam distillation as in Fig. II, 40, 1. Proceed with the steam distillation until crystals of p-dibromobenzene appear in the condenser. Change the receiver and continue with the distillation until all the p-dibromobenzeiie has passed over from time to time run out the water from the condenser so that the crystals melt and run down into the receiver. Reject the residue in the flask. Transfer the first distillate to a separatory funnel, wash it with a httle water, and dry the lower layer with a little anhydrous magnesium sulphate or anhydrous calcium chloride filter. Distil slowly from a small distilling flask use a wire gauze or an air bath (Fig. II, 5, 3). Collect the fraction which passes over at 150-170° pour the residue (R), while it is still hot, into a small beaker or porcelain basin for the isolation of p-dibromobenzene. Redistil the fraction of b.p. 150-170° and collect the bromobenzene at 154-157° (3). The yield is 60 g. [Pg.536]

Into a 1-litre beaker, provided with a mechanical stirrer, place 36 - 8 g. (36 ml.) of aniline, 50 g. of sodium bicarbonate and 350 ml. of water cool to 12-15° by the addition of a little crushed ice. Stir the mixture, and introduce 85 g. of powdered, resublimed iodine in portions of 5-6 g, at intervals of 2-3 minutes so that all the iodine is added during 30 minutes. Continue stirring for 20-30 minutes, by which time the colour of the free iodine in the solution has practically disappeared and the reaction is complete. Filter the crude p-iodoaniline with suction on a Buchner funnel, drain as completely as possible, and dry it in the air. Save the filtrate for the recovery of the iodine (1). Place the crude product in a 750 ml. round-bottomed flask fitted with a reflux double surface condenser add 325 ml. of light petroleum, b.p. 60-80°, and heat in a water bath maintained at 75-80°. Shake the flask frequently and after about 15 minutes, slowly decant the clear hot solution into a beaker set in a freezing mixture of ice and salt, and stir constantly. The p-iodoaniline crystallises almost immediately in almost colourless needles filter and dry the crystals in the air. Return the filtrate to the flask for use in a second extraction as before (2). The yield of p-iodoaniline, m.p. 62-63°, is 60 g. [Pg.647]

To prepare pure anhydrous o-benzoylbenzoic acid, dissolve the air-dried (or the moist) product in about 175 ml. of benzene contained in a 500 ml. round-bottomed flask fitted with a reflux condenser and heat on a water bath. Transfer the benzene solution to a separatory funnel, run oflF any water present, and dry with anhydrous magnesium sulphate. Concentrate the benzene solution to about 75 ml. and add light petroleum, (b.p. 60-80°) to the hot solution until a slight turbidity is produced. Allow to cool spontaneously to room temperature, then cool in ice to about 5°, collect the crystals and dry. The yield of pure, anhydrous o-benzoylbenzoic acid, m.p. 128°, is 32 g. [Pg.739]

Hydrolysis of benzyl cyanide to phenylacetamide. In a 1500 ml. three-necked flask, provided with a thermometer, reflux condenser and efficient mechanical stirrer, place 100 g. (98 ml.) of benzyl]cyanide and 400 ml. of concentrated hydrochloric acid. Immerse the flask in a water bath at 40°. and stir the mixture vigorously the benzyl cyanide passes into solution within 20-40 minutes and the temperature of the reaction mixture rises to about 50°, Continue the stirring for an additional 20-30 minutes after the mixture is homogeneous. Replace the warm water in the bath by tap water at 15°, replace the thermometer by a dropping funnel charged with 400 ml. of cold distilled water, and add the latter with stirring crystals commence to separate after about 50-75 ml. have been introduced. When all the water has been run in, cool the mixture externally with ice water for 30 minutes (1), and collect the crude phenylacetamide by filtration at the pump. Remove traces of phenylacetic acid by stirring the wet sohd for about 30 minutes with two 50 ml. portions of cold water dry the crystals at 50-80°. The yield of phenylacetamide, m.p. 154-155°, is 95 g. RecrystaUisation from benzene or rectified spirit raises the m.p. to 156°. [Pg.762]

Heat a mixture of 49 g. of acetylmethylurea (3) and 50 ml. of concentrated hydrochloric acid, with hand stirring, on a steam bath until it is apparent that no more solid is dissolving (4) and continue the heating for 3—4 minutes longer the total time of heating on the steam bath should be 8-12 minutes. Dilute the solution with 50 ml. of water and cool below 10° in an ice bath. Run in slowly and with stirring a cold saturated solution of 38 g. of A.R. sodium nitrite in 55 ml. of water below the level of the liquid. Keep the mixture in the ice bath for 5-10 minutes, filter the solid at the pump and wash it with 8-10 ml. of ice-cold water. Dry the nitrosomethylurea (pale yellow crystals) in the air or in a. vacuum desiccator (5) the yield is 34 g., m.p. 12 124°. [Pg.969]

Sodium salt of eosin. Grind together in a mortar 12 g. of eosin with 2 g. of anhydrous sodium carbonate. Transfer the mixture to a 250 ml. conical flask, moisten it with 10 ml. of rectified spirit, add 10 ml. of water and warm on a water bath, with stirring, until the evolution of carbon dioxide ceases. Add 50 ml. of ethyl alcohol, heat to boiling, and filter the hot solution through a fluted filter paper (supported in a short-stemmed funnel) into a beaker, and allow to stand overnight. Filter ofiF the browiiish-red crystals of sodium eosin, wash with a little alcohol, and dry. The yield is 10 g. [Pg.986]

There are some alternatives to this HCI generator type of crystallization. There are, of course, canisters of HCI gas that can be purchased. Also, one can crystallize with very concentrated (fuming) HCI by pouring the stuff directly into the ether/freebase [26]. Regular 35% HCI can do this too, but the water content may dissolve the MDA.HCl or make the crystals sticky which means that the chemist will have to dry the solution by removing the water. [Pg.249]

Picric acid may be made by gradually adding a mixture of phenol and sulfuric acid at 90—100°C to a nitration acid containing a small excess of nitric acid. The picric acid crystals are separated by centrifugiag, washed, and dried. The wash water is reused to decrease losses owiag to the water solubiUty of the picric acid. A yield of about 225% of the weight of phenol is commonly obtained. [Pg.18]

Manufacture. Potassium biduoride is produced from potassium hydroxide or potassium carbonate and hydroduoric acid. The concentrated solution is cooled and allowed to crystallize. The crystals are separated centtifugaHy and dried. The commercial product consists typically of 99.7% KHF2 and 0.2% KF. Potassium biduoride is available in the United States in 180-kg dmms at 4.04/kg (1992). [Pg.231]

Up to 0.4 g/L of the iodine stays in solution and the rest precipitates as crystallized iodine, which is removed by flotation (qv). This operation does not require a flotation agent, owing to the hydrophobic character of the crystallized element. From the flotation cell a heavy pulp, which is water-washed and submitted to a second flotation step, is obtained. The washed pulp is introduced into a heat exchanger where it is heated under pressure up to 120°C to melt the iodine that flows into a first reactor for decantation. From there the melt flows into a second reactor for sulfuric acid drying. The refined iodine is either flaked or prilled, and packed in 50- and 25-kg plastic-lined fiber dmms. [Pg.361]


See other pages where Crystallization drying the crystals is mentioned: [Pg.516]    [Pg.467]    [Pg.467]    [Pg.330]    [Pg.78]    [Pg.78]    [Pg.516]    [Pg.181]    [Pg.270]    [Pg.864]    [Pg.140]    [Pg.140]    [Pg.180]    [Pg.242]    [Pg.253]    [Pg.172]    [Pg.233]    [Pg.233]    [Pg.257]    [Pg.258]    [Pg.291]    [Pg.485]    [Pg.488]    [Pg.514]    [Pg.551]    [Pg.613]    [Pg.614]    [Pg.623]    [Pg.626]    [Pg.645]    [Pg.698]    [Pg.715]    [Pg.747]    [Pg.770]    [Pg.812]    [Pg.814]    [Pg.815]    [Pg.823]    [Pg.826]    [Pg.943]    [Pg.1012]    [Pg.107]    [Pg.165]    [Pg.102]    [Pg.574]    [Pg.225]    [Pg.66]   
See also in sourсe #XX -- [ Pg.689 ]




SEARCH



Crystal drying

© 2024 chempedia.info