Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystalline Embedded

H. Hayasaka, K. Tamura, K. Akagi, Dynamic switching of linearly polarized emission in liquid crystallinity-embedded photoresponsive conjugated polymers. Macromolecules 41, 2341-2346 (2008)... [Pg.351]

Sihca and aluminosihcate fibers that have been exposed to temperatures above 1100°C undergo partial conversion to mullite and cristobaUte (1). Cristobahte is a form of crystalline siUca that can cause siUcosis, a form of pneumoconiosis. lARC has deterrnined that cristobaUte should be classified as 2A, a probable carcinogen. The amount of cristobahte formed, the size of the crystals, and the nature of the vitreous matrix in which they are embedded are time- and temperature-dependent. Under normal use conditions, refractory ceramic fibers are exposed to a temperature gradient, thus only the hottest surfaces of the material may contain appreciable cristobahte. Manufacturers Material Safety Data Sheets (MSDS) should be consulted prior to handling RCF materials. [Pg.57]

Mechanical Properties. Although wool has a compHcated hierarchical stmcture (see Fig. 1), the mechanical properties of the fiber are largely understood in terms of a two-phase composite model (27—29). In these models, water-impenetrable crystalline regions (generally associated with the intermediate filaments) oriented parallel to the fiber axis are embedded in a water-sensitive matrix to form a semicrystalline biopolymer. The parallel arrangement of these filaments produces a fiber that is highly anisotropic. Whereas the longitudinal modulus of the fiber decreases by a factor of 3 from dry to wet, the torsional modulus, a measure of the matrix stiffness, decreases by a factor of 10 (30). [Pg.342]

Figure 3.6. Two-dimensional representation of molecules in a crystalline polymer according to the fringed micelle theory showing ordered regions (crystallites) embedded in an amorphous matrix. Figure 3.6. Two-dimensional representation of molecules in a crystalline polymer according to the fringed micelle theory showing ordered regions (crystallites) embedded in an amorphous matrix.
The pressed disc (or pellet) type of crystalline membrane electrode is illustrated by silver sulphide, in which substance silver ions can migrate. The pellet is sealed into the base of a plastic container as in the case of the lanthanum fluoride electrode, and contact is made by means of a silver wire with its lower end embedded in the pellet this wire establishes equilibrium with silver ions in the pellet and thus functions as an internal reference electrode. Placed in a solution containing silver ions the electrode acquires a potential which is dictated by the activity of the silver ions in the test solution. Placed in a solution containing sulphide ions, the electrode acquires a potential which is governed by the silver ion activity in the solution, and this is itself dictated by the activity of the sulphide ions in the test solution and the solubility product of silver sulphide — i.e. it is an electrode of the second kind (Section 15.1). [Pg.560]

This thermodynamic behaviour is consistent with stress-induced crystallisation of the rubber molecules on extension. Such crystallisation would account for the decrease in entropy, as the disorder of the randomly coiled molecules gave way to well-ordered crystalline regions within the specimen. X-Ray diffraction has confirmed that crystallisation does indeed take place, and that the crystallites formed have one axis in the direction of elongation of the rubber. Stressed natural rubbers do not crystallise completely, but instead consist of these crystallites embedded in a matrix of essentially amorphous rubber. Typical dimensions of crystallites in stressed rubber are of the order of 10 to 100 nm, and since the molecules of such materials are typically some 2000 nm in length, they must pass through several alternate crystalline and amorphous regions. [Pg.111]

Fig. 6. Electron microscopy of Ca -ATPase crystals in thin sections. Sarcoplasmic reticulum (2mg of protein/ml) was solubilized in the standard crystallization medium with C12E8 (2mg/mg protein) and incubated under nitrogen at 2°C for 15 days. The crystalline sediment was embedded in Epon-Araldite mixture and processed for electron microscopy. Depending on conditions during fixation, embedding, sectioning and viewing, the observed periodicities in different specimens varied between 103 and 147 A. Magnification, x 207000. From Taylor et al. [156]. Fig. 6. Electron microscopy of Ca -ATPase crystals in thin sections. Sarcoplasmic reticulum (2mg of protein/ml) was solubilized in the standard crystallization medium with C12E8 (2mg/mg protein) and incubated under nitrogen at 2°C for 15 days. The crystalline sediment was embedded in Epon-Araldite mixture and processed for electron microscopy. Depending on conditions during fixation, embedding, sectioning and viewing, the observed periodicities in different specimens varied between 103 and 147 A. Magnification, x 207000. From Taylor et al. [156].
The catalyst, composite of crystalline hematite particles embedded into a mesopor-ous silica SBA-15 matrix was used. They accounted the following reactions for ultrasound coupled with Fenton-like reagent ... [Pg.292]

If the ordered, crystalline regions are cross sections of bundles of chains and the chains go from one bundle to the next (although not necessarily in the same plane), this is the older fringe-micelle model. If the emerging chains repeatedly fold buck and reenter the same bundle in this or a different plane, this is the folded-chain model. In either case the mechanical deformation behavior of such complex structures is varied and difficult to unravel unambiguously on a molecular or microscopic scale. In many respects the behavior of crystalline polymers is like that of two-ph ise systems as predicted by the fringed-micelle- model illustrated in Figure 7, in which there is a distinct crystalline phase embedded in an amorphous phase (134). [Pg.23]

X-ray powder diffractometry is widely used to determine the degree of crystallinity of pharmaceuticals. X-ray diffractometric methods were originally developed for determining the degree of crystallinity of polymers. Many polymers exhibit properties associated with both crystalline (e.g., evolution of latent heat on cooling from the melt) and noncrystalline (e.g., diffuse x-ray pattern) materials. This behavior can be explained by the two-state model, according to which polymeric materials consist of small but perfect crystalline regions (crystallites) that are embedded within a continuous matrix [25]. The x-ray methods implicitly assume the two-state model of crystallinity. [Pg.195]

Titania films prepared by the methods described above are, however, just partially crystalline. Although WAXS patterns indicate formation of anatase crystals of ca. 10-12nm in size (Fig. 9.3a), the electron microscopy study demonstrates that the elongated crystals are actually embedded into an amorphous mesoporous matrix (Fig. 9.3c). The degree of crystallinity for such films usually does not exceed 60% attempts to increase it by calcination at higher temperatures cause uncontrolled crystal growth, which leads to collapse of mesoporos-ity and a drastic decrease in the surface area (Fig. 9.3d). [Pg.295]

These incorporate membranes fabricated from insoluble crystalline materials. They can be in the form of a single crystal, a compressed disc of micro-crystalline material or an agglomerate of micro-crystals embedded in a silicone rubber or paraffin matrix which is moulded in the form of a thin disc. The materials used are highly insoluble salts such as lanthanum fluoride, barium sulphate, silver halides and metal sulphides. These types of membrane show a selective and Nemstian response to solutions containing either the cation or the anion of the salt used. Factors to be considered in the fabrication of a suitable membrane include solubility, mechanical strength, conductivity and resistance to abrasion or corrosion. [Pg.238]

As the gel progressively dissolves to yield Si-richer zeolitic phases, the EDX and PIGE Si/Al ratios become closer. However, even for a 100 % crystalline phase, less A1 is still probed by EDX. This suggests that the A-synthesis ZSM-5 crystals must still contain some Al-rich amorphous phase, deeply embedded within the large particles, as to partially escape the EDX probing. For the same reason, the XPS also continuously probes the outer Si-rich layer of the growing particles. However, at the end of the crystallization, more A1 is detected on the outer rim than in the... [Pg.230]

Given the range of host molecules that may be that be put into network structures and strong current interest in the inclusion properties of crystalline network materials, embedding molecular hosts into hydrogen bonded network structures will continue to be a fruitful and exciting area of inclusion and structural chemistry. [Pg.177]


See other pages where Crystalline Embedded is mentioned: [Pg.1836]    [Pg.1837]    [Pg.339]    [Pg.153]    [Pg.1]    [Pg.370]    [Pg.477]    [Pg.191]    [Pg.191]    [Pg.49]    [Pg.92]    [Pg.495]    [Pg.519]    [Pg.152]    [Pg.130]    [Pg.37]    [Pg.116]    [Pg.371]    [Pg.229]    [Pg.370]    [Pg.75]    [Pg.127]    [Pg.260]    [Pg.19]    [Pg.491]    [Pg.80]    [Pg.273]    [Pg.228]    [Pg.56]    [Pg.60]    [Pg.63]    [Pg.186]    [Pg.55]    [Pg.24]    [Pg.54]    [Pg.216]    [Pg.97]   
See also in sourсe #XX -- [ Pg.62 , Pg.78 , Pg.97 ]




SEARCH



© 2024 chempedia.info