Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal growth surface nucleation mechanism

By use of the proper experimental conditions and Ltting the four models described above, it may be possible to arrive at a reasonable mechanistic interpretation of the experimental data. As an example, the crystal growth kinetics of theophylline monohydrate was studied by Rodriguez-Hornedo and Wu (1991). Their conclusion was that the crystal growth of theophylline monohydrate is controlled by a surface reaction mechanism rather than by solute diffusion in the bulk. Further, they found that the data was described by the screw-dislocation model and by the parabolic law, and they concluded that a defect-mediated growth mechanism occurred rather than a surface nucleation mechanism. [Pg.481]

Dislocation theory as a portion of the subject of solid-state physics is somewhat beyond the scope of this book, but it is desirable to examine the subject briefly in terms of its implications in surface chemistry. Perhaps the most elementary type of defect is that of an extra or interstitial atom—Frenkel defect [110]—or a missing atom or vacancy—Schottky defect [111]. Such point defects play an important role in the treatment of diffusion and electrical conductivities in solids and the solubility of a salt in the host lattice of another or different valence type [112]. Point defects have a thermodynamic basis for their existence in terms of the energy and entropy of their formation, the situation is similar to the formation of isolated holes and erratic atoms on a surface. Dislocations, on the other hand, may be viewed as an organized concentration of point defects they are lattice defects and play an important role in the mechanism of the plastic deformation of solids. Lattice defects or dislocations are not thermodynamic in the sense of the point defects their formation is intimately connected with the mechanism of nucleation and crystal growth (see Section IX-4), and they constitute an important source of surface imperfection. [Pg.275]

The kinetics of crystal growth has been much studied Refs. 98-102 are representative. Often there is a time lag before crystallization starts, whose parametric dependence may be indicative of the nucleation mechanism. The crystal growth that follows may be controlled by diffusion or by surface or solution chemistry (see also Section XVI-2C). [Pg.341]

A number of theories have been put forth to explain the mechanism of polytype formation (30—36), such as the generation of steps by screw dislocations on single-crystal surfaces that could account for the large number of polytypes formed (30,35,36). The growth of crystals via the vapor phase is beheved to occur by surface nucleation and ledge movement by face specific reactions (37). The soHd-state transformation from one polytype to another is beheved to occur by a layer-displacement mechanism (38) caused by nucleation and expansion of stacking faults in close-packed double layers of Si and C. [Pg.464]

Massive barite crystals (type C) are also composed of very fine grain-sized (several xm) microcrystals and have rough surfaces. Very fine barite particles are found on outer rims of the Hanaoka Kuroko chimney, while polyhedral well-formed barite is in the inner side of the chimney (type D). Type D barite is rarely observed in black ore. These scanning electron microscopic observations suggest that barite precipitation was controlled by a surface reaction mechanism (probably surface nucleation, but not spiral growth mechanism) rather than by a bulk diffusion mechanism. [Pg.75]

We have reviewed today s knowledge of the mechanisms for growth of electrolyte crystals from aqueous solution Convection, diffusion, and adsorption ( ) mechanisms leading to linear rate laws, as well as the surface spiral mechanism (parabolic rate law) and surface nucleation (exponential rate law). All of these mechanisms may be of geochemical importance in different situations. [Pg.611]

The growth of thin films on solid surfaces is important in technology, and nucleation is one of the keys for understanding the growth mechanism. The ability of STM to image local structures down to atomic detail makes it ideal for the study of nucleation, thin film growth, and crystal growth. [Pg.331]

For the ion-by-ion reaction, nucleation is generally slower and the density of nuclei smaller. Additionally, growth occurs (ideally) only at a solid surface therefore nucleation is confined to two dimensions, in contrast to three dimensions for the cluster mechanism. The crystal growth may terminate when adjacent crystals touch each other or by some other termination mechanism, e.g., adsorption of a surface-active species. These factors should be valid regardless of whether the mechanism proceeds via free chalcogenide ions or by a complex-decomposition mechanism. [Pg.356]

In zeolite systems chosen for study diffusion in the liquid phase and crystal growth on the crystal-liquid interface were the two major steps in converting gels to mordenite, zeolites A and X, the former being the rate-determining step for mordenite and the latter for zeolite X crystallization. In the mordenite system the effect of seed crystals, with surface areas per unit mass different by an order of magnitude, demonstrated the mechanism of nucleation on the seed crystal surfaces. The data support the hypothesis that crystal growth of the zeolite occurs from the solution phase rather than in the gel phase. [Pg.144]

It was possible for two of the systems chosen that the nucleation and crystallization activation energies could be determined separately by distinguishing the induction period and crystal growth period in the overall crystallization process. Of the two hypotheses proposed for zeolite crystallization, in the gel phase or from the solution phase, the data support the latter hypothesis for crystal growth with the crystal-liquid surface enhancing the nucleation process in seeded systems. The precise mechanism of nucleation in unseeded systems remains to be determined. [Pg.154]

Nucleation of two-dimensional clusters mechanism. In cases where the crystal face is smooth, growth can occur by either a two-dimensional nucleation mechanism or by a spiral-growth mechanism. For two-dimensional nucleation, growth occurs by attachment of molecules to the edge of a nucleus on the surface. Under ideal conditions, the growing step on a crystal surface will advance across the crystal face until that particular layer is complete. Before another layer starts, a center of crystallization has to form via surface nucleation. The growth rate forthis mechanism is exponentially dependent on the driving force ... [Pg.480]


See other pages where Crystal growth surface nucleation mechanism is mentioned: [Pg.175]    [Pg.188]    [Pg.203]    [Pg.341]    [Pg.860]    [Pg.291]    [Pg.136]    [Pg.285]    [Pg.226]    [Pg.86]    [Pg.86]    [Pg.38]    [Pg.68]    [Pg.355]    [Pg.126]    [Pg.71]    [Pg.328]    [Pg.605]    [Pg.8]    [Pg.55]    [Pg.123]    [Pg.193]    [Pg.320]    [Pg.322]    [Pg.16]    [Pg.98]    [Pg.129]    [Pg.144]    [Pg.456]    [Pg.1283]    [Pg.128]    [Pg.481]    [Pg.65]    [Pg.58]    [Pg.204]    [Pg.55]    [Pg.89]    [Pg.39]   
See also in sourсe #XX -- [ Pg.351 ]




SEARCH



Crystal growth mechanism

Crystal growth nucleation

Crystal mechanism

Crystal nucleation

Crystal surface nucleation

Crystallization growth mechanisms

Crystallization mechanism

Crystallization nucleated

Crystallization nucleation

Crystallizers nucleation

Mechanisms surfaces

Nucleation-growth

Surface mechanics

Surface nucleated

Surface nucleation growth

Surfaces Mechanical

© 2024 chempedia.info