Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal, defect, point liquid,

As in crystals, defects in liquid crystals can be classified as point, line or wall defects. Dislocations are a feature of liquid crystal phases where tliere is translational order, since tliese are line defects in tliis lattice order. Unlike crystals, tliere is a type of line defect unique to liquid crystals tenned disclination [39]. A disclination is a discontinuity of orientation of tire director field. [Pg.2551]

The singularities in the liquid crystals cause the deformation of the director field of liquid crystals and thus affect the symmetry of liquid crystals. This idea provides an approach to analyze the characteristics of the defects. The order vectors (or scalars, or tensors) of various liquid crystals are not the same. The director n is the order vector of the nematic liquid crystals, but the order for the cholesteric liquid crystals is a symmetric matrix, i.e., a tensor. Because the order vector space is thus a topological one, any configuration of the director field of liquid crystals is thus represented by a point in the order vector space. The order vector space (designated by M) is associated with the symmetry of liquid crystals. The topologically equivalent defects in liquid crystals constitutes the homotopy class. The complete set of homotopy classes constitutes a homotopy group, denoted Hr(M). r is the dimension of the sub-space surrounding a defect, which is related to the dimension of the defect (point, line or wall) d, and the dimension of the liquid crystal sample d by... [Pg.50]

The study of defects in liquid crystal systems is rooted in the understanding of defects in the solid state. For instance, crystals are rarely perfect and usually contain a variety of defects, e.g., point defects, line defects, or dislocations, and planar defects such as grain boundaries. In addition to these typical imperfections of the solid state, liquid crystals can also exhibit defects known as disclinations. These defects are not usually found in solids and result from the fact that mesophases have liquid-like structures that can give rise to continuous but sharp changes in the orientations of the molecules, i.e., sharp changes in orientation occur in the director field. [Pg.3099]

The concept of defects came about from crystallography. Defects are dismptions of ideal crystal lattice such as vacancies (point defects) or dislocations (linear defects). In numerous liquid crystalline phases, there is variety of defects and many of them are not observed in the solid crystals. A study of defects in liquid crystals is very important from both the academic and practical points of view [7,8]. Defects in liquid crystals are very useful for (i) identification of different phases by microscopic observation of the characteristic defects (ii) study of the elastic properties by observation of defect interactions (iii) understanding of the three-dimensional periodic structures (e.g., the blue phase in cholesterics) using a new concept of lattices of defects (iv) modelling of fundamental physical phenomena such as magnetic monopoles, interaction of quarks, etc. In the optical technology, defects usually play the detrimental role examples are defect walls in the twist nematic cells, shock instability in ferroelectric smectics, Grandjean disclinations in cholesteric cells used in dye microlasers, etc. However, more recently, defect structures find their applications in three-dimensional photonic crystals (e.g. blue phases), the bistable displays and smart memory cards. [Pg.209]

In addition to variations in the director, a typical liquid crystal sample usually contains many points where the director is undefined. Theoretically, these defects could be points, lines, or sheets where the direction of orientational order discontinuously changes in passing through one of these defects. Point defects tend to occm in restricted geometries and at strrfaces. Sheet defects tend to spread out such that the change in orientational... [Pg.34]

Eshelby, J. D. (1954). Distortion of a Crystal by Point Imperfections. Journal of Applied Physics, Vol. 25, No. 2, (February 1954), pp. 255-261. ISSN 0021-8979 Eshelby, J. D. (1956), The continuum theory of lattice defects. Solid State Physics Advances in Research and Applications. Frederick Seitz and David Turnbull, (Ed.), Vol. 3, (1956), pp. 79-144, Elsevier, ISBN 978-0-12-374292-6, Amsterdam, the Netherlands Friedel, J. (1954). Electronic structure of primary solid solutions in metals. Advances in Physics, Vol. 3, No. 12, (October 1954), pp. 446-507, ISSN 0001-8732 Fan, G. J. Choo, H. Liaw, P. K. (2007). A new criterion for the glass-forming ability of liquids. Journal of Non-Crystalline Solids, Vol. 353, No.l, (January 2007), pp. 102-107, ISSN 0022-3093... [Pg.69]

The point defect at a surface of an ordered medium can represent either the end of a line that is topologically stable in the bulk or a true surface point defect with no bulk singularity attached [61]. In cholesteric liquid crystals, all points with A = i 1 are the ends of bulk disclinations. Only when k = 2 An rotations of the director field), the point defect might be an isolated surface singularity. However, even in this case one should take care of the requirement of the layers equidistance. For example, the classical boojum configuration cannot be observed in a cholesteric vessel when 1. [Pg.143]

Movement through the body of a solid is called volume, lattice, or bulk diffusion. In a gas or liquid, bulk diffusion is usually the same in all directions and the material is described as isotropic. This is also true in amorphous or glassy solids and in cubic crystals. In all other crystals, the rate of bulk diffusion depends upon the direction taken and is anisotropic. Bulk diffusion through a perfect single crystal is dominated by point defects, with both impurity and intrinsic defect populations playing a part. [Pg.207]

The preceding paragraphs illustrate that analogies between point defects in a crystal and solute molecules in a solution have been used previously but in a fairly elementary way. However, the implications of the existence of such analogies in the formulation of the statistical mechanics of interacting defects has not been considered in detail apart from an early paper by Mayer,69 who was interested primarily in the relation of defect interactions, to the solid-liquid phase transition in crystals with short-range forces. The... [Pg.7]

Center of a point or line defect from which black brushes originate when a liquid crystal is observed between crossed polarizers. [Pg.121]

These and numerous other experiments prove that in metals the implanted atoms change their position and their surroundings between liquid He temperature and RT and that a considerable reordering of the lattice takes place even at low temperatures. The low-temperature recovery of ion-bombarded compounds is unfortunately completely unknown. Very few experiments at liquid-N temperatures indicate a strong temperature dependence too. A recovery of the majority of the point defects and centers below RT was found experimentally only for ionic crystals irradiated with electrons ... [Pg.52]

There are certain essential differences between solid state reactions and reactions involving gaseous or liquid phases. In the latter case, the kinetic motion of the reactant molecules ensures that they are available to one another for reaction under conditions which can be defined by statistical laws. Solid state reactions occur between apparently regular crystal lattices, in which the kinetic motion is very restricted and depends on the presence of lattice defects. Interaction can only occur at points of contact between the reacting phases and is therefore dependent on particle size and particle size distribution. The factors which govern the rate of a solid state reaction are (/) the rate of the boundary phase processes which lead to the consumption of the original lattices, and (ii) the rate of particle transfer through the product layer. [Pg.254]


See other pages where Crystal, defect, point liquid, is mentioned: [Pg.234]    [Pg.602]    [Pg.582]    [Pg.50]    [Pg.574]    [Pg.144]    [Pg.278]    [Pg.361]    [Pg.182]    [Pg.161]    [Pg.109]    [Pg.678]    [Pg.636]    [Pg.1961]    [Pg.296]    [Pg.87]    [Pg.184]    [Pg.139]    [Pg.92]    [Pg.105]    [Pg.46]    [Pg.479]    [Pg.54]    [Pg.1133]    [Pg.112]    [Pg.165]    [Pg.14]    [Pg.249]    [Pg.102]    [Pg.14]    [Pg.106]    [Pg.876]    [Pg.653]    [Pg.261]    [Pg.291]    [Pg.105]    [Pg.272]   


SEARCH



Crystal defects

Crystallization points

Crystals point defects

Defect point

© 2024 chempedia.info