Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross-site reactivity

Several resins have been used frequently in reactant sequestration. Ami-nomethylpolystyrene 1 and the more highly functionalized polyamine resins 2 and 3 have been reported to sequester excesses of solution-phase electrophiles, including isocyanates, isothiocyanates, sulfonyl chlorides, acid chlorides, anhydrides, aldehydes, and imines. Cross-site reactivity is not an issue with the more densely functionalized sequestering resins so their use in an automated laboratory environment offers a significant resin and volume economy compared to less densely functionalized resins. [Pg.152]

Liquid coating resins are prepared by reacting methanol or butanol with the initial hydroxyme-thylureas. Ether exchange reactions between the amino resin and the reactive sites on the polymer produce a cross-linked film. [Pg.1025]

Modified oligonucleotides can be used to cross-link DNA sequences via a reactive group tethered to an oligonucleotide. When irradiated with uv light, psoralens (31) reacts with thymine bases, and the reaction yields a cross-link if the thymine residues are adjacent to each other on opposite strands. Psoralen linked to oligonucleotides have been shown to induce site-specific cross-links in vitro (51). [Pg.266]

A two-site immunometric assay of undecapeptide substance P (SP) has been developed. This assay is based on the use of two different antibodies specifically directed against the N- and C-terminal parts of the peptide (95). Affinity-purified polyclonal antibodies raised against the six amino-terminal residues of the molecule were used as capture antibodies. A monoclonal antibody directed against the carboxy terminal part of substance P (SP), covalently coupled to the enzyme acetylcholinesterase, was used as the tracer antibody. The assay is very sensitive, having a detection limit close to 3 pg/mL. The assay is fiiUy specific for SP because cross-reactivity coefficients between 0.01% were observed with other tachykinins, SP derivatives, and SP fragments. The assay can be used to measure the SP content of rat brain extracts. [Pg.247]

AH of the reactions considered to be useful in the production of hemoglobin-based blood substitutes use chemical modification at one or more of the sites discussed above. Table 2 Hsts the different types of hemoglobin modifications with examples of the most common reactions for each. Differences in the reactions are determined by the dimensions and reactivity of the cross-linking reagents. Because the function of hemoglobin in binding and releasing... [Pg.162]

Other 2,3-Diphosphoglycerate Pocket Cross-Linkers. The reactivity of the valine NAl(l)a and lysine EF6(82)p residues in the 2,3-DPG pocket shown by NFPLP and (bis-PL)P4 has stimulated the search for other reagents that react similarly but have potential for greater efficiency and ease of scaleup. The systematic study of four different dicarboxyhc acid derivatives, cross-linked in both oxygenated and deoxygenated conditions, has been reported (92). Each of these derivatives presents problems in purification, and proof of the sites of reaction is tedious. [Pg.165]

Vulcanization. Some of the chlorine atoms along the chain (1,2 units) are very labile and reactive, and provide excellent sites for cross-linking. Hence neoprene is not vulcanized by sulfur but by metal oxides, eg, magnesium and zinc oxides, although sulfur is generally included in the compound to control the rate of vulcanization. [Pg.470]

Cross-linking reactions for the polyisobutylene-type polymers depend on adding a reactive site, usually an aHyUc hydrogen or halogen. These reactive sites allow vulcanization with sulfur and accelerators or metal oxides (76,77). [Pg.484]

Halobutyl Cures. Halogenated butyls cure faster in sulfur-accelerator systems than butyl bromobutyl is generally faster than chlorobutyl. Zinc oxide-based cure systems result in C—C bonds formed by alkylation through dehydrohalogenation of the halobutyl to form a zinc chloride catalyst (94,95). Cure rate is increased by stearic acid, but there is a competitive reaction of substitution at the halogen site. Because of this, stearic acid can reduce the overall state of cure (number of cross-links). Water is a strong retarder because it forms complexes with the reactive intermediates. Amine cure may be represented as follows ... [Pg.486]

The presence of pendant reactive vinyl groups through 1,2 and 3,4 addition provides a site for branching and cross-linking since these may be involved in other chain reactions. Because of this a 1,4 polymer is generally to be desired. [Pg.70]

Polyolefins such as polyethylene and polypropylene contain only C—C and C—H bonds and may be considered as high molecular weight paraffins. Like the simpler paraffins they are somewhat inert and their major chemical reaction is substitution, e.g. halogenation. In addition the branched polyethylenes and the higher polyolefins contain tertiary carbon atoms which are reactive sites for oxidation. Because of this it is necessary to add antioxidants to stabilise the polymers against oxidation Some polyolefins may be cross-linked by peroxides. [Pg.95]

The solubility parameter is about 19.2MPa and being amorphous they dissolve in such solvents as tetrahydrofuran, mesityl oxide, diacetone alcohol and dioxane. Since the main chain is composed of stable C—C and C—O—C linkages the polymer is relatively stable to chemical attack, particularly from acids and alkalis. As already mentioned, the pendant hydroxyl groups are reactive and provide a site for cross-linking. [Pg.607]

Chlorobutyl rubber is prepared by chlorination of butyl rubber (chlorine content is about 1 wt%). This is a substitution reaction produced at the allylic position, so little carbon-carbon double unsaturation is lost. Therefore, chlorobutyl rubber has enhanced reactivity of the carbon-carbon double bonds and supplies additional reactive sites for cross-linking. Furthermore, enhanced adhesion is obtained to polar substrates and it can be blended with other, more unsaturated elastomers. [Pg.585]

The amide group of polyacrylamide offers a reactive site to change the ionic character or to cross-link the polymer. A polyacrylamide solution undergoes general reactions of the aliphatic amide group [1,2,11]. The impor-... [Pg.63]

Interaction due to the use of reactive anodes can best be avoided by careful siting of each anode during installation. In particular, anodes should not be buried close to a point where the protected structure crosses an unprotected structure, nor should anodes be so placed that an unprotected pipe or cable passes between the anode and the protected installation. [Pg.240]

First, in composites with high fiber concentrations, there is little matrix in the system that is not near a fiber surface. Inasmuch as polymerization processes are influenced by the diffusion of free radicals from initiators and from reactive sites, and because free radicals can be deactivated when they are intercepted at solid boundaries, the high interfacial area of a prepolymerized composite represents a radically different environment from a conventional bulk polymerization reactor, where solid boundaries are few and very distant from the regions in which most of the polymerization takes place. The polymer molecular weight distribution and cross-link density produced under such diffusion-controlled conditions will differ appreciably from those in bulk polymerizations. [Pg.85]

Importantly, the crystal structure of 34 complexed with N9 sialidase (Fig. 8) indicated differences in the orientation of the guanidino group in subsite S2, and in its interaction with the active site residues, compared to that of zanamivir (Babu et al. 2000). These differences have implications for cross-reactivity of 34 with zanamivir-resistant influenza viruses that have Glul 19 mutations in the sialidase S2 subsite (see Sect. 5.1). [Pg.133]

The time-dependent nature of migration and chemical reaction of free radicals [30] in irradiated polymers can play an important role in altering the polymer structure and properties, e.g., cross-link formation via reactive sites or chain scission, or postirradiation oxidative influences (irradiation in presence of air or oxygen). [Pg.855]

The second step introduces the side chain group by nucleophilic displacement of the bromide (as a resin-bound a-bromoacetamide) with an excess of primary amine. Because there is such diversity in reactivity among candidate amine submonomers, high concentrations of the amine are typically used ( l-2 M) in a polar aprotic solvent (e.g. DMSO, NMP or DMF). This 8 2 reaction is really a mono-alkylation of a primary amine, a reaction that is typically complicated by over-alkylation when amines are alkylated with halides in solution. However, since the reactive bromoacetamide is immobilized to the solid support, any over-alkyla-tion side-products would be the result of a cross-reaction with another immobilized oligomer (slow) in preference to reaction with an amine in solution at high concentration (fast). Thus, in the sub-monomer method, the solid phase serves not only to enable a rapid reaction work-up, but also to isolate reactive sites from... [Pg.4]


See other pages where Cross-site reactivity is mentioned: [Pg.228]    [Pg.294]    [Pg.133]    [Pg.471]    [Pg.532]    [Pg.309]    [Pg.317]    [Pg.223]    [Pg.303]    [Pg.521]    [Pg.440]    [Pg.488]    [Pg.162]    [Pg.242]    [Pg.218]    [Pg.261]    [Pg.296]    [Pg.438]    [Pg.696]    [Pg.1113]    [Pg.89]    [Pg.275]    [Pg.202]    [Pg.170]    [Pg.881]    [Pg.958]    [Pg.184]    [Pg.323]   
See also in sourсe #XX -- [ Pg.152 ]

See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Cross reactivity

Reactive sites

© 2024 chempedia.info