Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Critical micelle concentration system

Mukeqee P and Mysels K J 1970 Critical Micelle Concentrations of Aqueous Surfactant Systems (National Standard Reference Data System, National Bureau of Standards Circular No 36) (Springfield, VA National Teehnieal Information Serviee)... [Pg.2604]

P. Mukerjee and M. J. Mysels, Critical Micelle Concentration ofMqueous Suf actant Systems, NSROS-NBS 36, U.S. Dept, of Commerce, Washiagton, D.C., 1971. [Pg.261]

The kinetic mechanism of emulsion polymerization was developed by Smith and Ewart [10]. The quantitative treatment of this mechanism was made by using Har-kin s Micellar Theory [18,19]. By means of quantitative treatment, the researchers obtained an expression in which the particle number was expressed as a function of emulsifier concentration, initiation, and polymerization rates. This expression was derived for the systems including the monomers with low water solubility and partly solubilized within the micelles formed by emulsifiers having low critical micelle concentration (CMC) values [10]. [Pg.192]

In the latter function, the reagent behaves as a surfactant and forms a cationic micelle at a concentration above the critical micelle concentration (1 x 10 4M for CTMB). The complexation reactions occurring on the surface of the micelles differ from those in simple aqueous solution and result in the formation of a complex of higher ligand to metal ratio than in the simple aqueous system this effect is usually accompanied by a substantial increase in molar absorptivity of the metal complex. [Pg.172]

Very large solvent effects arc also observed for systems where the monomers can aggregate either with themselves or another species. For example, the apparent kp for polymerizable surfactants, such as certain vinyl pyridinium salts and alkyl salts of dimethylaminoalkyl methacrylates, in aqueous solution above the critical micelle concentration (cmc) are dramatically higher than they are below the cmc in water or in non-aqueous media.77 This docs not mean that the value for the kp is higher. The heterogeneity of the medium needs to be considered. In the micellar system, the effective concentration of double bonds in the vicinity of the... [Pg.426]

If the property evaluated, for instance, the critical micelle concentration, can be approximated by a suitable plot, it is depicted in the ternary system as a concave area (e.g., cM area) located in the space above the Gibbs triangle as the basis for the distinct concentrations. The property axis describing the cM data stands vertically on the base triangle. [Pg.188]

When the variation of any colligative property of a surfactant in aqueous solution is examined, two types of behavior are apparent. At low concentrations, properties approximate those to be expected from ideal behavior. However, at a concentration value that is characteristic for a given surfactant system (critical micelle concentration, CMC), an abrupt deviation from such behavior is observed. At concentrations above the CMC, molecular aggregates called micelles are formed. By increasing the concentration of the surfactant, depending on the chemical and physical nature of the molecule, structural changes to a more... [Pg.256]

AC ADME ANS AUC BA/BE BBB BBM BBLM BCS BLM BSA CE CHO CMC CPC CPZ CTAB CV DA DOPC DPPC DPPH aminocoumarin absorption, distribution, metabolism, excretion anilinonaphthalenesulfonic acid area under the curve bioavailability-bioequivalence blood-brain barrier brush-border membrane brush-border lipid membrane biopharmaceutics classification system black lipid membrane bovine serum albumin capillary electrophoresis caroboxaldehyde critical micelle concentration centrifugal partition chromatography chlorpromazine cetyltrimethylammonium bromide cyclic votammetry dodecylcarboxylic acid dioleylphosphatidylcholine dipalmitoylphosphatidylcholine diphenylpicrylhydrazyl... [Pg.304]

Mukerjee, P. Mysels, K. J. Critical Micelle Concentrations of Aoueous Surfactant Systems. U. S. Department of Commerce, NSRDS-NBS 36,1971. [Pg.305]

Oheme and co-workers investigated335 in an aqueous micellar system the asymmetric hydrogenation of a-amino acid precursors using optically active rhodium-phosphine complexes. Surfactants of different types significantly enhance both activity and enantioselectivity provided that the concentration of the surfactants is above the critical micelle concentration. The application of amphiphilized polymers and polymerized micelles as surfactants facilitates the phase separation after the reaction. Table 2 shows selected hydrogenation results with and without amphiphiles and with amphiphilized polymers for the reaction in Scheme 61.335... [Pg.119]

Most studies of micellar systems have been carried out on synthetic surfactants where the polar or ionic head group may be cationic, e.g. an ammonium or pyridinium ion, anionic, e.g. a carboxylate, sulfate or sulfonate ion, non-ionic, e.g. hydroxy-compound, or zwitterionic, e.g. an amine oxide or a carboxylate or sulfonate betaine. Surfactants are often given trivial or trade names, and abbreviations based on either trivial or systematic names are freely used (Fendler and Fendler, 1975). Many commercial surfactants are mixtures so that purity can be a major problem. In addition, some surfactants, e.g. monoalkyl sulfates, decompose slowly in aqueous solution. Some examples of surfactants are given in Table 1, together with values of the critical micelle concentration, cmc. This is the surfactant concentration at the onset of micellization (Mukerjee and Mysels, 1970) and can therefore be taken to be the maximum concentration of monomeric surfactant in a solution (Menger and Portnoy, 1967). Its value is related to the change of free energy on micellization (Fendler and Fendler, 1975 Lindman and Wennerstrom, 1980). [Pg.215]

The critical concentration at which the first micelle forms is called the critical micelle concentration, or CMC. As the concentration of block copolymer chains increases in the solution, more micelles are formed while the concentration of nonassociated chains, called unimers, remains constant and is equal to the value of the CMC. This ideal situation corresponds to a system at thermodynamic equilibrium. However, experimental investigations on the CMC have revealed that its value depends on the method used for its determination. Therefore, it seems more reasonable to define phenomenologically the CMC as the concentration at which a sufficient number of micelles is formed to be detected by a given method [16]. In practical terms, the CMC is often determined from plots of the surface tension as a function of the logarithm of the concentration. The CMC is then defined as the concentration at which the surface tension stops decreasing and reaches a plateau value. [Pg.82]

Mukerjee, P Mysels, K.J. "Critical Micelle Concentration of Aqueous Surfactant Systems" NSRDS-NBS 36, US Nat. Bur. Stand., 1971. [Pg.85]

In recent studies, Friberg and co-workers (J, 2) showed that the 21 carbon dicarboxylic acid 5(6)-carboxyl-4-hexyl-2-cyclohexene-1-yl octanoic acid (C21-DA, see Figure 1) exhibited hydrotropic or solubilizing properties in the multicomponent system(s) sodium octanoate (decanoate)/n-octanol/C2i-DA aqueous disodium salt solutions. Hydrotropic action was observed in dilute solutions even at concentrations below the critical micelle concentration (CMC) of the alkanoate. Such action was also observed in concentrates containing pure nonionic and anionic surfactants and C21-DA salt. The function of the hydrotrope was to retard formation of a more ordered structure or mesophase (liquid crystalline phase). [Pg.117]

In this system, in the aqueous phase, the micellar system, NaDDS, on addition of butanol would change in free energy due to mixed micelle formation (i. je. NaDDS+n-Butanol), as we showed in an earlier study (23). The cahnge in free energy is also observed from the fact that both the critical micelle concentration (c.m.c.) and the Krafft point of NaDDS solution change on addition of n-Butanol (23,... [Pg.334]

The structure and properties of water soluble dendrimers, such as 46, is, in itself, a very promising area of research due to their similarity with natural micellar systems. As can be seen from the two-dimensional representation of 46 the structure contains a hydrophobic inner core surrounded by a hydrophilic layer of carboxylate groups (Fig. 12). However these dendritic micelles differ from traditional micelles in that they are static, covalently bound structures instead of dynamic associations of individual molecules. A number of studies have exploited this unique feature of dendritic micelles in the design of novel recyclable solubilization and extraction systems that may find great application in the recovery of organic materials from aqueous solutions [84,86-88]. These studies have also shown that dendritic micelles can solubilize hydrophobic molecules in aqueous solution to the same, if not greater, extent than traditional SDS micelles. The advantages of these dendritic micelles are that they do not suffer from a critical micelle concentration and therefore display solvation ability at nanomolar... [Pg.149]

The temperature, abbreviated c.m.t., at which a deter-gent/solvent system or a lipid/solvent system passes from a hydrated crystalline state to an isotropic micellar solution. For a number of lipids, the c.m.t. is below the freezing point of the solvent. The Krafft point,, is the c.m.t. at the critical micelle concentration. [Pg.176]

Fluid colloidal system of two or more components. (Gold Book online, 1972 entry [2].) Note Examples of colloidal sols are protein sols, gold sols, emulsions and surfactant solutions above their critical micelle concentrations. [Pg.214]

Ideal Mixed Micelles. The Critical Micelle Concentration (CMC) is the lowest surfactant concentration at which micelles form the lower the CMC, the greater the tendency of a system to form micelles. When the total surfactant concentration equals the CMC, an infintesimal fraction of surfactant is present as micelles therefore, the CMC is equal to the total monomer concentration in equilibrium with the micellar pseudo—phase. The CMC for monomer—micelle equilibrium is analogous to the dew point in vapor—liquid equilibrium. [Pg.5]

The variation of the mixture critical micelle concentration (CMCf ) with temperature and with overall surfactant composition has been studied using ultrafiltration for two binary mixed nonionic/anionic systems. [Pg.30]

In mixed surfactant systems, physical properties such as the critical micelle concentration (cmc) and interfacial tensions are often substantially lower than would be expected based on the properties of the pure components. Such nonideal behavior is of both theoretical interest and industrial importance. For example, mixtures of different classes of surfactants often exhibit synergism (1-3) and this behavior can be utilized in practical applications ( ).In addition, commercial surfactant preparations usually contain mixtures of various species (e.g. different isomers and chain lengths) and often include surface active impurities which affect the critical micelle concentration and other properties. [Pg.102]

The critical micelle concentrations (cmc) of the mixed surfactant systems were determined by measuring the surface tension as a function of total surfactant concentration on a du Noiiy ring balance at 25°C. [Pg.227]

The bis(2-ethylhexyl) sodium sulfosuccinate system was initially investigated because its structure of liquid crystalline solution phases and mechanism of solubilization with water had been reported by Rogers and Winsor (10). In our studies, we substituted methanol for water. Table I lists critical micelle concentrations for bis(2-ethylhexyl) sodium sulfosuccinate, triethylammonium linoleate and tetradecyldimethylammonium linoleate in methanol and 2-octanol at 25°C. Literature references for critical micelle concentrations in methanol are sparse, and it has even been suggested that in polar solvents such as ethanol, either micellization does not occur or, if it does, only to a small degree (4). The data of Table I show that micellization occurs in methanol at low concentrations. [Pg.285]

For solutions of AEg with different distributions of hydrocarbon chain lengths, the Y log C curves appear to be different than mono-component system. The surface pressure at critical micelle concentration (iTcjic) AEg with a long hydrocarbon chain (C gEg) is Increased by adding the short AEg, but the effect is not significant if the hydrocarbon chain is in a wide distribution (i.g. coconut fatty radical) (Figure 2,3,4). As for the efficiency of surface tension reduction there is a synergestic effect for the mixed... [Pg.298]

Let us recall the micellar aqueous system, as this procedure is actually the basic one. The chemistry is based on fatty acids, that build micelles in higher pH ranges and vesicles at pH c. 8.0-8.5 (Hargreaves and Deamer, 1978a). The interest in fatty acids lies also in the fact that they are considered possible candidates for the first prebiotic membranes, as will be seen later on. The experimental apparatus is particularly simple, also a reminder of a possible prebiotic situation the water-insoluble ethyl caprylate is overlaid on an aqueous alkaline solution, so that at the macroscopic interphase there is an hydrolysis reaction that produces caprylate ions. The reaction is very slow, as shown in Figure 7.15, but eventually the critical micelle concentration (cmc) is reached in solution, and thus the first caprylate micelles are formed. Aqueous micelles can actually be seen as lipophylic spherical surfaces, to which the lipophylic ethyl caprylate (EC) avidly binds. The efficient molecular dispersion of EC on the micellar surface speeds up its hydrolysis, (a kind of physical micellar catalysis) and caprylate ions are rapidly formed. This results in the formation of more micelles. However, more micelles determine more binding of the water-insoluble EC, with the formation of more and more micelles a typical autocatalytic behavior. The increase in micelle population was directly monitored by fluorescence quenching techniques, as already used in the case of the... [Pg.146]

In the mass action model the micellar system can be described by only one parameter, and despite this simplicity, a good qualitative description of the main physical properties is obtained, for example the onset of cmc (critical micelle concentration), as shown in Figure 9.7. Notice that the formation of micelles becomes appreciable only at the cmc, and after that, by increasing further the surfactant concentration, all added surfactant is transformed directly into micelles, so that the surfactant concentration in solution remains constant at the level of cmc. [Pg.187]


See other pages where Critical micelle concentration system is mentioned: [Pg.2572]    [Pg.237]    [Pg.651]    [Pg.411]    [Pg.442]    [Pg.47]    [Pg.186]    [Pg.189]    [Pg.225]    [Pg.706]    [Pg.776]    [Pg.549]    [Pg.354]    [Pg.306]    [Pg.139]    [Pg.139]    [Pg.271]    [Pg.170]    [Pg.27]    [Pg.141]    [Pg.352]    [Pg.215]    [Pg.107]    [Pg.599]    [Pg.12]   
See also in sourсe #XX -- [ Pg.32 , Pg.232 , Pg.234 ]




SEARCH



Critical concentration

Critical micell concentration

Critical micelle concentration

Critical micelle concentration dodecyl sulfate system

Critical micelle concentration micellization

Critical micelle concentration surfactant-polymer systems

Critical micellization concentrations

Micelle concentration

Micelle system

Micelles critical micelle concentration

Systems, concentrating

© 2024 chempedia.info