Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Critical Micelle Concentration CMC

At low concentrations surfactant molecules adsorbed at the surface are in equilibrium with other molecules in solution. Above a threshold concentration, called the critical micelle concentration (cmc, for short), another equilibrium must be considered. This additional equilibrium is that between individual molecules in solution and clusters of emulsifier molecules known as micelles. [Pg.398]

During Stage I the number of polymer particles range from 10 to 10 per mL. As the particles grow they adsorb more emulsifier and eventually reduce the soap concentration below its critical micelle concentration (CMC). Once below the CMC, the micelles disappear and emulsifier is distributed between the growing polymer particles, monomer droplets, and aqueous phase. [Pg.23]

Emulsification is the process by which a hydrophobic monomer, such as styrene, is dispersed into micelles and monomer droplets. A measure of a surfactant s abiUty to solubilize a monomer is its critical micelle concentration (CMC). Below the CMC the surfactant is dissolved ia the aqueous phase and does not serve to solubilize monomer. At and above the CMC the surfactant forms spherical micelles, usually 50 to 200 soap molecules per micelle. Many... [Pg.24]

Ahphatic amine oxides behave as typical surfactants in aqueous solutions. Below the critical micelle concentration (CMC), dimethyl dodecyl amine oxide exists as single molecules. Above this concentration micellar (spherical) aggregates predorninate in solution. Ahphatic amine oxides are similar to other typical nonionic surfactants in that their CMC decreases with increasing temperature. [Pg.189]

Anionic Surfactants. PVP also interacts with anionic detergents, another class of large anions (108). This interaction has generated considerable interest because addition of PVP results in the formation of micelles at lower concentration than the critical micelle concentration (CMC) of the free surfactant the mechanism is described as a "necklace" of hemimicelles along the polymer chain, the hemimicelles being surrounded to some extent with PVP (109). The effective lowering of the CMC increases the surfactant s apparent activity at interfaces. PVP will increase foaming of anionic surfactants for this reason. [Pg.532]

Surfactant values are at the critical micelle concentration (CMC) in aqueous solution surfactant/defoamer values are at 0.1% concentration in aqueous solution. [Pg.465]

The kinetic mechanism of emulsion polymerization was developed by Smith and Ewart [10]. The quantitative treatment of this mechanism was made by using Har-kin s Micellar Theory [18,19]. By means of quantitative treatment, the researchers obtained an expression in which the particle number was expressed as a function of emulsifier concentration, initiation, and polymerization rates. This expression was derived for the systems including the monomers with low water solubility and partly solubilized within the micelles formed by emulsifiers having low critical micelle concentration (CMC) values [10]. [Pg.192]

Very large solvent effects arc also observed for systems where the monomers can aggregate either with themselves or another species. For example, the apparent kp for polymerizable surfactants, such as certain vinyl pyridinium salts and alkyl salts of dimethylaminoalkyl methacrylates, in aqueous solution above the critical micelle concentration (cmc) are dramatically higher than they are below the cmc in water or in non-aqueous media.77 This docs not mean that the value for the kp is higher. The heterogeneity of the medium needs to be considered. In the micellar system, the effective concentration of double bonds in the vicinity of the... [Pg.426]

If the coupling component is not ionic, however, more dramatic effects occur, as found by Hashida et al. (1979) and by Tentorio et al. (1985). Hashida used N,N-bis(2-hydroxyethyl)aniline, while Tentorio and coworkers took 1-naphthylamine and l-amino-2-methylnaphthalene as coupling components. With cationic arenediazo-nium salts and addition of sodium dodecyl sulfate (SDS), rate increases up to 1100-fold were measured in cases where the surfactant concentration was higher than the critical micelle concentration (cmc). Under the same conditions the reaction... [Pg.376]

In highly diluted solutions the surfactants are monodispersed and are enriched by hydrophil-hydrophobe-oriented adsorption at the surface. If a certain concentration which is characteristic for each surfactant is exceeded, the surfactant molecules congregate to micelles. The inside of a micelle consists of hydrophobic groups whereas its surface consists of hydrophilic groups. Micelles are dynamic entities that are in equilibrium with their surrounded concentration. If the solution is diluted and remains under the characteristic concentration, micelles dissociate to single molecules. The concentration at which micelle formation starts is called critical micelle concentration (cmc). Its value is characteristic for each surfactant and depends on several parameters [189-191] ... [Pg.88]

If one compares several commercial LAS samples for foam stability, detergency performance, critical micelle concentration (CMC), hardness sensitivity, or... [Pg.116]

The curve shown in Fig. 6 for sodium dodecyl sulfate is characteristic of ionic surfactants, which present a discontinuous and sharp increase of solubility at a particular temperature [80]. This temperature is known as the Krafft temperature. The Krafft temperature is defined by ISO as the temperature [in practice, a narrow range of temperatures] at which the solubility of ionic surface active agents rises sharply. At this temperature the solubility becomes equal to the critical micelle concentration (cmc). The curve of solubility vs. temperature intersects with the curve of the CMC vs. temperature at the Krafft temperature. [Pg.242]

Schulze [51] described an extensive study on C12-C14 ether carboxylic acid sodium salt (4.5 mol EO) in terms of surface tension, critical micelle concentration (CMC), wetting, detergency, foam, hardness stability, and lime soap dispersing properties. He found good detergent effect compared to the etho-xylated C16-C18 fatty alcohol (25 mol EO) independent of CaCl2 concentration, there was excellent soil suspending power, low surface tension, and fewer Ca deposits than with alkylbenzenesulfonate. [Pg.323]

In addition to their poor solubility in water, alkyl phosphate esters and dialkyl phosphate esters are further characterized by sensitivity to water hardness [37]. A review of the preparation, properties, and uses of surface-active anionic phosphate esters prepared by the reactions of alcohols or ethoxylates with tetra-phosphoric acid or P4O10 is given in Ref. 3. The surfactant properties of alkyl phosphates have been investigated [18,186-188]. The critical micelle concentration (CMC) of the monoalkyl ester salts is only moderate see Table 6 ... [Pg.591]

Surfactants have a unique long-chain molecular structure composed of a hydrophilic head and hydrophobic tail. Based on the nature of the hydrophilic part surfactants are generally categorized as anionic, non-ionic, cationic, and zwitter-ionic. They all have a natural tendency to adsorb at surfaces and interfaces when added in low concentration in water. Surfactant absorption/desorption at the vapor-liquid interface alters the surface tension, which decreases continually with increasing concentrations until the critical micelle concentration (CMC), at which micelles (colloid-sized clusters or aggregates of monomers) start to form is reached (Manglik et al. 2001 Hetsroni et al. 2003c). [Pg.65]

The interaction of such compounds with the bilayer can result in alteration in vesicle properties such as permeability and stability of the bilayer structure. Amphiphatic compounds such as detergents (e.g., Triton and lysophosphoiipids) can intercalate in the bilayer below their critical micelle concentration (CMC) (Kitagawa et al.,... [Pg.272]

When the variation of any colligative property of a surfactant in aqueous solution is examined, two types of behavior are apparent. At low concentrations, properties approximate those to be expected from ideal behavior. However, at a concentration value that is characteristic for a given surfactant system (critical micelle concentration, CMC), an abrupt deviation from such behavior is observed. At concentrations above the CMC, molecular aggregates called micelles are formed. By increasing the concentration of the surfactant, depending on the chemical and physical nature of the molecule, structural changes to a more... [Pg.256]

Like other emulsifiers, an EUP forms micelles at a critical micelle concentration (CMC). For comonomer-free EUP-emulsions of the (MA+HD)- type the CMC is about 5 X 10"4 g/ml [115,118]. The CMC depends on the composition and chain length of the polyester, the presence of an electrolyte [118] and the temperature. [Pg.161]

Fig. 13. Relation between the critical micelle concentration (CMC) of self-emulsifying unsaturated polyesters (EUP) and their Mn[119,120]. Fig. 13. Relation between the critical micelle concentration (CMC) of self-emulsifying unsaturated polyesters (EUP) and their Mn[119,120].
A similar multiphase complication that should be kept in mind when discussing solutions at finite concentrations is possible micelle formation. It is well known that for many organic solutes in water, when the concentration exceeds a certain solute-dependent value, called the critical micelle concentration (cmc), the solute molecules are not distributed in a random uncorrelated way but rather aggregate into units (micelles) in which their distances of separation and orientations with respect to each other and to solvent molecules have strong correlations. Micelle formation, if it occurs, will clearly have a major effect on the apparent activity coefficient but the observation of the phenomenon requires more sophisticated analytical techniques than observation of, say, liquid-liquid phase separation. [Pg.79]


See other pages where Critical Micelle Concentration CMC is mentioned: [Pg.415]    [Pg.480]    [Pg.2572]    [Pg.447]    [Pg.260]    [Pg.427]    [Pg.547]    [Pg.149]    [Pg.237]    [Pg.529]    [Pg.22]    [Pg.81]    [Pg.527]    [Pg.651]    [Pg.983]    [Pg.442]    [Pg.471]    [Pg.523]    [Pg.361]    [Pg.220]    [Pg.144]    [Pg.225]    [Pg.248]    [Pg.706]    [Pg.332]    [Pg.32]    [Pg.37]    [Pg.83]    [Pg.262]    [Pg.287]   
See also in sourсe #XX -- [ Pg.160 ]

See also in sourсe #XX -- [ Pg.124 ]

See also in sourсe #XX -- [ Pg.124 ]

See also in sourсe #XX -- [ Pg.124 ]

See also in sourсe #XX -- [ Pg.101 ]

See also in sourсe #XX -- [ Pg.292 , Pg.301 ]

See also in sourсe #XX -- [ Pg.402 ]

See also in sourсe #XX -- [ Pg.218 ]

See also in sourсe #XX -- [ Pg.32 , Pg.73 , Pg.308 , Pg.309 , Pg.352 ]




SEARCH



CMC (

CMC (Critical micelle

Concept of Critical Micelle Concentration (CMC)

Critical concentration

Critical micell concentration

Critical micelle concentration

Critical micelle concentration micellization

Critical micellization concentrations

Micelle Formation and Critical Micellar Concentration (CMC) of Bile Salts

Micelle concentration

Micelles and Critical Micelle Concentration (CMC)

Micelles critical micelle concentration

The Critical Micelle Concentration (CMC)

© 2024 chempedia.info