Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ideal cracking

This most widely used black pigment is also in the top 50 chemicals. About 4.0 billion lb of carbon black were made in 2001. Commercial value was 1.4 billion at 35C/lb, but 93% of this is used for reinforcement of elastomers. Only 7% is used in paints and inks. Carbon black is made by the partial oxidation of residual hydrocarbons from crude oil. See Chapter 6, Section 7.2. The hydrocarbons are usually the heavy by-product residues from petroleum cracking, ideally high in aromatic content and low in sulfur and ash, bp around 260°C. [Pg.349]

In the sheeting market, the low density polyethylenes are less important than the high density resins. The high density resins have excellent chemical resistance, stress-crack resistance, durabiUty, and low temperature properties which make them ideal for pond liners, waste treatment faciUties, and landfills. In thicker section, HMW-HDPE sheet makes good containers, trays, tmck-bed liners, disposable items, and concrete molds. The good durabiUty, abrasion resistance, and light weight are critical elements for its selection. [Pg.378]

Another class of water-based materials that has recently (ca 1997) begun to see use ia masoary water repeUeacy treatmeats is sUicoae elastomer latex (89), which can deHver a water-permeable sUicone mbber film. These latex elastomers are ideal as water repeUents for substrates that contain very large pores, such as concrete block. In addition, the elastomer can bridge minor cracks, and wUl expand and contract with the substrate. [Pg.311]

There is considerable literature on material imperfections and their relation to the failure process. Typically, these theories are material dependent flaws are idealized as penny-shaped cracks, spherical pores, or other regular geometries, and their distribution in size, orientation, and spatial extent is specified. The tensile stress at which fracture initiates at a flaw depends on material properties and geometry of the flaw, and scales with the size of the flaw (Carroll and Holt, 1972a, b Curran et al., 1977 Davison et al., 1977). In thermally activated fracture processes, one or more specific mechanisms are considered, and the fracture activation rate at a specified tensile-stress level follows from the stress dependence of the Boltzmann factor (Zlatin and Ioffe, 1973). [Pg.279]

Because oxides are usually quite brittle at the temperatures encountered on a turbine blade surface, they can crack, especially when the temperature of the blade changes and differential thermal contraction and expansion stresses are set up between alloy and oxide. These can act as ideal nucleation centres for thermal fatigue cracks and, because oxide layers in nickel alloys are stuck well to the underlying alloy (they would be useless if they were not), the crack can spread into the alloy itself (Fig. 22.3). The properties of the oxide film are thus very important in affecting the fatigue properties of the whole component. [Pg.223]

Cracking imposes an additional penalty in a vacuum unit in that it forms gas which cannot be condensed at the low pressures employed. This gas must be vented by compressing it to atmospheric pressure. This is accomplished by means of steam jet ejectors. Ideally, it would be possible to operate a vacuum pipe still without ejectors, with the overhead vapors composed only of steam. In practice, however, leakage of air into the system and the minor cracking which occurs make it necessary to provide a means of removing non-condensibles from the system. In addition to the distillation of atmospheric residuum, the lube vacuum pipe still is also used for rerunning of off specification lube distillates. [Pg.217]

Fluid bed processes have been subject to many problems and uncertainties in development and scale up from bench-scale reactors. The fluidization behavior of each process seems different and very often does not meet expectations based on experience with earlier plants. With hindsight fluid cat cracking seems to be an ideal system from the point of view of easy operation and straightforward scale up. [Pg.28]

Dehydrogenation. Under ideal conditions (i.e., a clean feedstock and a catalyst with no metals), cat cracking does not yield any appreciable amount of molecular hydrogen. Therefore, dehydrogenation reactions will proceed only if the catalyst is contaminated with metals such as nickel and vanadium. [Pg.135]

Some Thermodynamic Data for Idealized Reactions of Importance in Catalytic Cracking... [Pg.137]

When an iron is exposed to an oxidising atmosphere, it develops a scale which consists of a series of layers of oxides of varying composition. The thickness of the scale naturally depends on the temperature and the duration of oxidation (/). The scale does not, however, thicken at a uniform rate with time since its very presence reduces the accessibility of the metal surface to the oxidising gases. Ideally, the thickness of the scale should increase as /t, but in practice cracks develop in the scale, and these allow the gases to reach the metal surface somewhat more readily than is postulated by this relationship. Cracking will always tend to occur as the film... [Pg.1004]

While ideally structures should be designed and fabricated so that environment-sensitive cracking is avoided, in practice it is sometimes necessary to live with the problem. This implies an ability to detect and measure the size of cracks before they reach the critical size that may result in catastrophic failure. Such inspection has important implications for plant design, which should be such as to allow inspection at relevant locations. The latter are regions of high residual stress (welded, bolted or riveted joints) and regions of geometrical discontinuity (notches, crevices, etc.) where stress or environment concentration may occur. [Pg.1194]

Many workers have employed pre-cracked specimens in a number of configurations that permit interchangeable data to be obtained from an analysis derived with fracture mechanics. The pre-crack provides an ideal crevice for... [Pg.1263]

The behavior of the strain softened material resembles the behavior of rubberlike polymers. For instance, the Poisson s ratio of an ideally plastic material is also close to 0.5 [94, 95], Proper understanding of crack propagation involves the microscopic level. Apparently, the load is transmitted by the molecular strands [97] from one crosslink to the next crosslink, exactly, as it is in rubberlike materials. However, two things are different in strain softened polymers as compared to rubberlike materials ... [Pg.346]

The products obtained from DPM cracking in the present work agree with the results from the literature, mentioned in the Introduction, which indicate that the reaction proceeds via carbocation formation on acidic sites. This implies that the decomposition of DPM does not need the successive intervention of two catalytic sites, like in the "ideal hydrocracking" mechanism. Only acidic sites are sufficient to carry out the reaction. The improved activity of the mixtures when compared to the pure phases must therefore be explained differently. [Pg.104]

It is inherently difficult to measure the strength of a material since this is strongly influenced by the microstructure of the material, i.e., the distribution of flaws which strongly influence the propagation of cracks. This concept is illustrated in Fig. 31, where the elastic stress distribution in an ideally elastic, brittle material is seen to become infinite as the crack tip is approached. The key properties which characterize the strength of a material are ... [Pg.398]

The above results are derived from linear elastic fracture mechanics and are strictly valid for ideally brittle materials with the limit of the process zone size going to zero. In order to apply this simple framework of results, Irwin (1957) proposed that the process zone, r be treated as an effective increase in crack length, Sc. With this modification, the fracture toughness becomes... [Pg.400]

Au vapor deposited on mica at 300-400° is known to form large [111] terraces [117-122], Several attempts to use these surfaces in the flow-cell (Figure 3C) generally resulted in delamination, due to the constant rinsing of the cell. Ideally, the top of the mica consists of a single plane of the compound. This is not generally the case, however, and defects lead to cracks, solution infiltration and then delamination. Some success in using Au on mica in the flow-cells has been had when a photo-resist was patterned on the surface. It is possible that the resist helps to seal defects. [Pg.14]


See other pages where Ideal cracking is mentioned: [Pg.1193]    [Pg.474]    [Pg.388]    [Pg.1226]    [Pg.614]    [Pg.1193]    [Pg.474]    [Pg.388]    [Pg.1226]    [Pg.614]    [Pg.457]    [Pg.365]    [Pg.344]    [Pg.129]    [Pg.522]    [Pg.469]    [Pg.441]    [Pg.233]    [Pg.287]    [Pg.287]    [Pg.143]    [Pg.217]    [Pg.109]    [Pg.76]    [Pg.276]    [Pg.125]    [Pg.530]    [Pg.365]    [Pg.1456]    [Pg.508]    [Pg.111]    [Pg.121]    [Pg.161]    [Pg.97]    [Pg.98]    [Pg.297]    [Pg.566]    [Pg.421]   
See also in sourсe #XX -- [ Pg.553 ]




SEARCH



© 2024 chempedia.info