Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free-radical cracking

Isomerization reactions occur frequently in catalytic cracking, and infrequently in thermal cracking. In both, breaking of a bond is via beta-scission. However, in catalytic cracking, carbocations tend to rearrange to form tertiary ions. Tertiary ions are more stable than secondary and primary ions they shift around and crack to produce branched molecules (Equation 4-10). (In thermal cracking, free radicals yield normal or straight chain compounds.)... [Pg.133]

Free Radical is an uncharged molecule formed in the initial step of thermal cracking. Free radicals are very reactive and short-lived. [Pg.360]

Monomer. Ethylene (which according to lUPAC rules should be called ethene and the corresponding polymer, from source-based rules, polyethene) is a gas Tb = - 0A°C) obtained from the thermal cracking (free radical process) of oil products. The initial reaction is a homolytic rupture of the covalent bonds of hydrocarbons that generate primary free radicals but the subsequent reactions are extremely varied (H abstractions, additions, decompositions, and isomerizations of radicals, etc.) and lead to a complex mixture that must be fractionated. Ethylene can also be produced either by dehydration of ethanol... [Pg.514]

The cyanoacryhc esters are prepared via the Knoevenagel condensation reaction (5), in which the corresponding alkyl cyanoacetate reacts with formaldehyde in the presence of a basic catalyst to form a low molecular weight polymer. The polymer slurry is acidified and the water is removed. Subsequendy, the polymer is cracked and redistilled at a high temperature onto a suitable stabilizer combination to prevent premature repolymerization. Strong protonic or Lewis acids are normally used in combination with small amounts of a free-radical stabilizer. [Pg.178]

Each isomer has its individual set of physical and chemical properties however, these properties are similar (Table 6). The fundamental chemical reactions for pentanes are sulfonation to form sulfonic acids, chlorination to form chlorides, nitration to form nitropentanes, oxidation to form various compounds, and cracking to form free radicals. Many of these reactions are used to produce intermediates for the manufacture of industrial chemicals. Generally the reactivity increases from a primary to a secondary to a tertiary hydrogen (37). Other properties available but not Hsted are given in equations for heat capacity and viscosity (34), and saturated Hquid density (36). [Pg.403]

Stabilized by hydrogen transfer. The stabilized free radicals undergo secondary cracking reactions as they come in contact with the hot coke. [Pg.343]

Ethylene Dichloride Pyrolysis to Vinyl Chloride. Thermal pyrolysis or cracking of EDC to vinyl chloride and HCl occurs as a homogenous, first-order, free-radical chain reaction. The accepted general mechanism involves the four steps shown in equations 10—13 ... [Pg.419]

Steam Cracking. Steam cracking is a nonselective process that produces many products from a variety of feedstocks by free-radical reactions. An excellent treatise on the fundamentals of manufacturing ethylene has been given (44). Eeedstocks range from ethane on the light end to heavy vacuum gas oil on the heavy end. All produce the same product slate but in different amounts depending on the feedstock. [Pg.366]

Pyrolysis. Pyrolysis of 1,2-dichloroethane in the temperature range of 340—515°C gives vinyl chloride, hydrogen chloride, and traces of acetylene (1,18) and 2-chlorobutadiene. Reaction rate is accelerated by chlorine (19), bromine, bromotrichloromethane, carbon tetrachloride (20), and other free-radical generators. Catalytic dehydrochlorination of 1,2-dichloroethane on activated alumina (3), metal carbonate, and sulfate salts (5) has been reported, and lasers have been used to initiate the cracking reaction, although not at a low enough temperature to show economic benefits. [Pg.7]

Mechanism. The thermal cracking of hydrocarbons proceeds via a free-radical mechanism (20). Siace that discovery, many reaction schemes have been proposed for various hydrocarbon feeds (21—24). Siace radicals are neutral species with a short life, their concentrations under reaction conditions are extremely small. Therefore, the iategration of continuity equations involving radical and molecular species requires special iategration algorithms (25). An approximate method known as pseudo steady-state approximation has been used ia chemical kinetics for many years (26,27). The errors associated with various approximations ia predicting the product distribution have been given (28). [Pg.434]

Kinetic Models Used for Designs. Numerous free-radical reactions occur during cracking therefore, many simplified models have been used. For example, the reaction order for overall feed decomposition based on simple reactions for alkanes has been generalized (37). [Pg.437]

An effective method of NVF chemical modification is graft copolymerization [34,35]. This reaction is initiated by free radicals of the cellulose molecule. The cellulose is treated with an aqueous solution with selected ions and is exposed to a high-energy radiation. Then, the cellulose molecule cracks and radicals are formed. Afterwards, the radical sites of the cellulose are treated with a suitable solution (compatible with the polymer matrix), for example vinyl monomer [35] acrylonitrile [34], methyl methacrylate [47], polystyrene [41]. The resulting copolymer possesses properties characteristic of both fibrous cellulose and grafted polymer. [Pg.796]

The first step in cracking is the thermal decomposition of hydrocarbon molecules to two free radical fragments. This initiation step can occur by a homolytic carbon-carbon bond scission at any position along the hydrocarbon chain. The following represents the initiation reaction ... [Pg.56]

The radicals may further crack, yielding an olefin and a new free radical. Cracking usually occurs at a bond beta to the carbon carrying the unpaired electron. [Pg.56]

The secondary free radical can crack on either side of the carbon carrying the unpaired electron according to the beta scission rule, and a terminal olefin is produced. [Pg.56]

The simplest paraffin (alkane) and the most widely used feedstock for producing ethylene is ethane. As mentioned earlier, ethane is obtained from natural gas liquids. Cracking ethane can be visualized as a free radical dehydrogenation reaction, where hydrogen is a coproduct ... [Pg.91]

Many side reactions occur when ethane is cracked. A prohahle sequence of reactions between ethylene and a formed methyl or an ethyl free radical could be represented ... [Pg.92]

Propene and 1-butene, respectively, are produced in this free radical reaction. Higher hydrocarbons found in steam cracking products are probably formed through similar reactions. [Pg.92]

When liquid hydrocarbons such as a naphtha fraction or a gas oil are used to produce olefins, many other reactions occur. The main reaction, the cracking reaction, occurs by a free radical and beta scission of the C-C bonds. This could be represented as ... [Pg.92]

The newly formed free radical may terminate by abstraction of a hydrogen atom, or it may continue cracking to give ethylene and a free radical. Aromatic compounds with side chains are usually dealkylated. The produced free radicals further crack to yield more olefins. [Pg.92]

The initial step in the chemistry of thermal cracking is the formation of free radicals. They are formed upon splitting the C-C bond. A tree radical is an uncharged molecule with an unpaired electron. The rupturing produces two uncharged species that share a pair of electrons. Equation 4-1 shows formation of a free radical when a paraffin molecule is thermally cracked. [Pg.127]

Our treatment of chain reactions has been confined to relatively simple situations where the number of participating species and their possible reactions have been sharply bounded. Most free-radical reactions of industrial importance involve many more species. The set of possible reactions is unbounded in polymerizations, and it is perhaps bounded but very large in processes such as naptha cracking and combustion. Perhaps the elementary reactions can be postulated, but the rate constants are generally unknown. The quasi-steady hypothesis provides a functional form for the rate equations that can be used to fit experimental data. [Pg.54]

At the lower temperatures (375 and 400 °C), the n-dodecane conversions is higher with a catalyst. Moreover, the products distributions are very different. This is explained by the cracking mechanisms (free radical and carbocation) and maybe by the supercritical conditions. This is no more the case at 425 °C as the catalysts seem to deactivate rapidly by coking. So the formed products come mainly from the thermal cracking. [Pg.352]

Rice has shown that the cracking of hydrocarbons at high temperatures gives free radicals.48 Only the methyl and ethyl radicals survive long enough to react with mercury to give dialkylmercury. Presumably the others decomposes by a beta cleavage process. [Pg.25]

Thermal cracking is the breaking of a hydrocarbon carbon-carbon bond through the free-radical mechanism. Cracking may result in the formation of lower chained hydrocarbons, the original "cracked" hydrocarbon, or further cracking of the hydrocarbon to "soot. [Pg.219]

Thermal cracking is a free radical chain reaction. The mechanism is given in Fig. 7.8. [Pg.108]


See other pages where Free-radical cracking is mentioned: [Pg.155]    [Pg.155]    [Pg.365]    [Pg.126]    [Pg.128]    [Pg.246]    [Pg.202]    [Pg.280]    [Pg.727]    [Pg.289]    [Pg.72]    [Pg.135]    [Pg.51]    [Pg.93]    [Pg.248]    [Pg.24]    [Pg.51]    [Pg.52]    [Pg.349]    [Pg.381]    [Pg.337]    [Pg.210]    [Pg.612]    [Pg.14]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Cracks crack-free

© 2024 chempedia.info