Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coupling reactions palladium/carbon

Recent trend in the synthesis of olefinic pheromones is the use of transition metal-catalyzed cross coupling reaction for carbon-carbon bond formation. Scheme 8 summarizes a synthesis of the termite trail marker pheromone, (3Z,6Z)-3,6-dodecadien- l-ol (2) by Oehlschlager [19]. The key-step is the palladium-catalyzed cross-coupling of allylic chloride A and alkenylalane B. [Pg.9]

Palladium-catalysed coupling reactions under carbon monoxide have been extensively used in traditional medicinal chemistry72. Despite this, these crucial transformations have hardly been employed in combinatorial chemistry. These shortcomings have recently been recognised and a series of microwave-heated carbonylative transformations with solid or liquid CO-sources have been reported. [Pg.36]

Carbonylative Amination Among cross-coupling reactions, palladium-catalyzed aminocarbonylation is an interesting regioselective procedure to prepare amides [73]. The methodology consists of three-component coupling of aryl or alkynyl haUdes, primary/secondary amines, and carbon monoxide. [Pg.178]

We reasoned that such a decarboxylation step could also be employed in a redox-neutral cross-coupling reaction with carbon electrophiles. On this basis, we drew up a catalytic cycle that starts with an oxidative addition of aryl halides or pseudohalides to a coordinatively unsaturated palladium(O) species f (Scheme 5). The more weakly coordinating the leaving group X, the easier should be its subsequent replacement by a carboxylate. At least for X = OTf, the palladium(ll) carboxylate h should form quantitatively, whereas for X = halide, it should be possible to enforce this step by employing silver or thallium salts as species g. The ensuing thermal decarboxylation of the palladium(ll) intermediate i represents the most critical step. Myers results indicated that certain palladium(ll) carboxylates liberate carbon dioxide on heating. However, it remained unclear whether arylpalladium (II) carboxylate complexes such as i would display a similar reactivity. If this were to be the case, they would form Ar-Pd-Ar intermediates k, which in turn are... [Pg.126]

Polymerization by G—G Goupling. An aromatic carbon—carbon coupling reaction has been employed for the synthesis of rigid rod-like polyimides from imide-containing dibromo compounds and aromatic diboronic acids ia the presence of palladium catalyst, Pd[P(CgH )2]4 (79,80). [Pg.403]

In the synthesis of Win 57,273 the attachment of the group, a 2,6-dimethylpytidinyl group, involves formation of a carbon-carbon bond rather than a carbon-nitrogen bond. The method for the attachment of this group is a palladium mediated coupling reaction (77,78) of 4-tributylstarmyl-2,6-dimethylpyridine [122033-61 -8] with a 7-halo quinolone (26). [Pg.456]

They have also developed a route to 2-allenylindole derivatives (98T13929). When prop-2-ynyl carbonates (76) are reacted with 73 in the presence of palladium catalyst, a cross-coupling reaction occurs to give 77a (46%) and 77b (45%). Under a pressurized carbon monoxide atmosphere (10 atm), the palladium-catalyzed reaction of 73 with 78 provides 79a (60%) and 79b (60%) (2000H2201). In a similar reaction, when the substrate is changed to aryl halides (80), 2-aryl-1-methoxyindoles such as 81a (70%) and 81b (60%) are prepared (97H2309). [Pg.115]

Heck reaction, palladium-catalyzed cross-coupling reactions between organohalides or triflates with olefins (72JOC2320), can take place inter- or intra-molecularly. It is a powerful carbon-carbon bond forming reaction for the preparation of alkenyl- and aryl-substituted alkenes in which only a catalytic amount of a palladium(O) complex is required. [Pg.22]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

Over the last decade, the chemistry of the carbon-carbon triple bond has experienced a vigorous resurgence [1]. Whereas construction of alkyne-con-taining systems had previously been a laborious process, the advent of new synthetic methodology based on organotransition metal complexes has revolutionized the field [2]. Specifically, palladium-catalyzed cross-coupling reactions between alkyne sp-carbon atoms and sp -carbon atoms of arenes and alkenes have allowed for rapid assembly of relatively complex structures [3]. In particular, the preparation of alkyne-rich macrocycles, the subject of this report, has benefited enormously from these recent advances. For the purpose of this review, we Emit the discussion to cychc systems which contain benzene and acetylene moieties only, henceforth referred to as phenylacetylene and phenyldiacetylene macrocycles (PAMs and PDMs, respectively). Not only have a wide... [Pg.82]

Jiang L, Buchwald SL (2004) Palladium-catalyzed aromatic carbon-nitrogen bond formation. In de Meijere A, Diedeiich F (eds) Metal-catalyzed cross-coupling reactions, 2nd edn. Wiley-VCH, Weinheim... [Pg.189]

A potentially interesting development is the microwave-assisted transition-metal-free Sonogashira-type coupling reaction (Eq. 4.10). The reactions were performed in water without the use of copper(I) or a transition metal-phosphine complex. A variety of different aryl and hetero-aryl halides were reactive in water.25a The amount of palladium or copper present in the reaction system was determined to be less than 1 ppm by AAS-MS technique. However, in view of the recent reassessment of a similarly claimed transition-metal-free Suzuki-type coupling reaction, the possibility of a sub-ppm level of palladium contaminants found in commercially available sodium carbonate needs to be ruled out by a more sensitive analytical method.25 ... [Pg.103]

Carbon-Carbon Cross-Coupling Reactions Catalyzed by Palladium Nanoparticles in Ionic Liquids... [Pg.17]

Palladium-catalyzed carbon-carbon cross-coupling reactions are among the best studied reactions in recent decades since their discovery [102, 127-130], These processes involve molecular Pd complexes, and also palladium salts and ligand-free approaches, where palladium(O) species act as catalytically active species [131-135]. For example, the Heck reaction with aryl iodides or bromides is promoted by a plethora of Pd(II) and Pd(0) sources [128, 130], At least in the case of ligand-free palladium sources, the involvement of soluble Pd NPs as a reservoir for catalytically active species seems very plausible [136-138], Noteworthy, it is generally accepted that the true catalyst in the reactions catalyzed by Pd(0) NPs is probably molecular zerovalent species detached from the NP surface that enter the main catalytic cycle and subsequently agglomerate as N Ps or even as bulk metal. [Pg.17]

In recentyears, metal NPs synthesized in ILs were recognized as suitable materials to promote the formation of chemical bonds in reactions other than palladium-catalyzed carbon-carbon cross-coupling reactions. For example, aldehydes and esters... [Pg.19]

Tributylstannyl)-3-cyclobutene-1,2-diones and 4-methyl-3-(tributylstan-nyl)-3-cyclobutene-l,2-dione 2-ethylene acetals undergo the palladium/copper-catalyzed cross coupling with acyl halides, and palladium-catalyzed carbon-ylative cross coupling with aryl/heteroaryl iodides [45]. The coupling reaction of alkenyl (phenyl )iodonium triflates is also performed by a palladium/copper catalyst [46],... [Pg.121]

Reaction of organic halides with alkenes catalyzed by palladium compounds (Heck-type reaction) is known to be a useful method for carbon-carbon bond formation at unsubstituted vinyl positions. The first report on the application of microwave methodology to this type of reaction was published by Hallberg et al. in 1996 [86], Recently, the palladium catalyzed Heck coupling reaction induced by microwave irradiation was reported under solventless liquid-liquid phase-transfer catalytic conditions in the presence of potassium carbonate and a small amount of [Pd(PPh3)2Cl2]-TBAB as a catalyst [87]. The arylation of alkenes with aryl iodides proceeded smoothly to afford exclusively trans product in high yields (86-93%) (Eq. 61). [Pg.176]

The first examples of the use of palladium as a catalyst for carbon-carbon coupling reactions were reported almost thirty years ago [14], and over recent decades a massive effort has been devoted to the extension of the scope of palladium-catalyzed reactions. Organic and organometallic chemists have received extensive input from palladium-coordination chemistry in the task of understanding the mechanisms behind these efficient synthetic procedures [14]. [Pg.380]

Palladium(0)-catalyzed coupling reactions - i. e. the Heck and Sonogashira reactions, the carbonylative coupling reactions, the Suzuki and Stille cross-coupling reactions, and allylic substitutions (Fig. 11.1) - have enabled the formation of many kinds of carbon-carbon attachments that were previously very difficult to make. These reactions are usually robust and occur in the presence of a wide variety of functional groups. The reactions are, furthermore, autocatalytic (i.e. the substrate regenerates the required oxidation state of the palladium) and a vast number of different ligands can be used to fine-tune the reactivity and selectivity of the reactions. [Pg.380]


See other pages where Coupling reactions palladium/carbon is mentioned: [Pg.236]    [Pg.304]    [Pg.63]    [Pg.168]    [Pg.12]    [Pg.19]    [Pg.297]    [Pg.154]    [Pg.592]    [Pg.598]    [Pg.693]    [Pg.24]    [Pg.182]    [Pg.38]    [Pg.212]    [Pg.38]    [Pg.233]    [Pg.723]    [Pg.1329]    [Pg.589]    [Pg.14]    [Pg.370]    [Pg.370]    [Pg.371]    [Pg.115]    [Pg.119]    [Pg.126]    [Pg.145]    [Pg.166]    [Pg.174]    [Pg.439]   
See also in sourсe #XX -- [ Pg.318 ]




SEARCH



Carbon Cross-Coupling Reactions Catalyzed by Palladium Nanoparticles in Ionic Liquids

Carbon coupling

Carbon, coupling reactions

Palladium carbonates

Palladium coupling

Palladium coupling reaction

© 2024 chempedia.info