Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coulometry coulometric

Coulometry comes in several flavors constant-potential or potentiostatic coulometry, constant-current or amperostatic coulometry, coulometric titrations, and electrogravimetry. [Pg.738]

Lingane was a leader in the field of - electro analytical chemistry and wrote, with Kolthoff, the definitive, two volume monograph, Polarography [i] that remains a useful reference work. He also helped develop other electroanalytical techniques, like controlled potential electrolysis, -> coulometry, -> coulometric titrations, and developed an early electromechanical (Lingane-Jones) potentiostat, He wrote the widely-used monograph in this field, Electroanalytical Chemistry (1st edn., 1953 2nd edn., 1958). Lingane received a number of awards, including the Analytical Chemistry (Fisher) Award of the American Chemical Society in 1958. Many of his Ph.D. students, e.g., -> Meites, Fred Anson, Allen Bard, Dennis Peters, and Dennis Evans, went on to academic careers in electrochemistry. [Pg.403]

As an alternative for the external application of a stepwise change in pH, as described above, titrant can be added by coulometry. Coulometric generation of protons or hydroxyl ions is possible by sending a current between a noble metal actuator electrode, situated closely around the ISFET gate, and a distant counter electrode 115]. [Pg.385]

Controlled-current coulometry (coulometric titration) can be utilized to determine not-easily oxidizable (or reducible) analytes of different applications via acid-base, precipitation, com-plexation titrations, etc. Furthermore, it benefits short analysis time and small amount determination [2]. Dzudovic et al. [21] reviewed some studies employing acid-base titrations for the determinations of non-aqueous or water-insoluble compounds (organic and inorganic). Typically, acidimetric titrations were undertaken coulometrically based on the EF liberated by the oxidation of the introduced H2O. Coulometric titrations of bases in nonaqueous solvent were performed using anodic depolarizers (titrants) to generate as a source. On the other hand, coulometrically atkalimetric... [Pg.279]

In potentiometry, the potential of an electrochemical cell under static conditions is used to determine an analyte s concentration. As seen in the preceding section, potentiometry is an important and frequently used quantitative method of analysis. Dynamic electrochemical methods, such as coulometry, voltammetry, and amper-ometry, in which current passes through the electrochemical cell, also are important analytical techniques. In this section we consider coulometric methods of analysis. Voltammetry and amperometry are covered in Section 1 ID. [Pg.496]

Coulometric methods of analysis are based on an exhaustive electrolysis of the analyte. By exhaustive we mean that the analyte is quantitatively oxidized or reduced at the working electrode or reacts quantitatively with a reagent generated at the working electrode. There are two forms of coulometry controlled-potential coulometry, in which a constant potential is applied to the electrochemical cell, and controlled-current coulometry, in which a constant current is passed through the electrochemical cell. [Pg.496]

In coulometry, current and time are measured, and equation 11.24 or equation 11.25 is used to calculate Q. Equation 11.23 is then used to determine the moles of analyte. To obtain an accurate value for N, therefore, all the current must result in the analyte s oxidation or reduction. In other words, coulometry requires 100% current efficiency (or an accurately measured current efficiency established using a standard), a factor that must be considered in designing a coulometric method of analysis. [Pg.496]

Selecting a Constant Potential In controlled-potential coulometry, the potential is selected so that the desired oxidation or reduction reaction goes to completion without interference from redox reactions involving other components of the sample matrix. To see how an appropriate potential for the working electrode is selected, let s develop a constant-potential coulometric method for Cu + based on its reduction to copper metal at a Pt cathode working electrode. [Pg.497]

A second approach to coulometry is to use a constant current in place of a constant potential (Figure 11.23). Controlled-current coulometry, also known as amperostatic coulometry or coulometric titrimetry, has two advantages over controlled-potential coulometry. First, using a constant current makes for a more rapid analysis since the current does not decrease over time. Thus, a typical analysis time for controlled-current coulometry is less than 10 min, as opposed to approximately 30-60 min for controlled-potential coulometry. Second, with a constant current the total charge is simply the product of current and time (equation 11.24). A method for integrating the current-time curve, therefore, is not necessary. [Pg.499]

Coulometry may be used for the quantitative analysis of both inorganic and organic compounds. Examples of controlled-potential and controlled-current coulometric methods are discussed in the following sections. [Pg.501]

Control led-Potential Coulometry The majority of controlled-potential coulometric analyses involve the determination of inorganic cations and anions, including trace metals and halides. Table 11.8 provides a summary of several of these methods. [Pg.501]

Controllcd-Currcnt Coulomctry The use of a mediator makes controlled-current coulometry a more versatile analytical method than controlled-potential coulome-try. For example, the direct oxidation or reduction of a protein at the working electrode in controlled-potential coulometry is difficult if the protein s active redox site lies deep within its structure. The controlled-current coulometric analysis of the protein is made possible, however, by coupling its oxidation or reduction to a mediator that is reduced or oxidized at the working electrode. Controlled-current coulometric methods have been developed for many of the same analytes that may be determined by conventional redox titrimetry. These methods, several of which are summarized in Table 11.9, also are called coulometric redox titrations. [Pg.503]

Scale of Operation Coulometric methods of analysis can be used to analyze small absolute amounts of analyte. In controlled-current coulometry, for example, the moles of analyte consumed during an exhaustive electrolysis is given by equation 11.32. An electrolysis carried out with a constant current of 100 pA for 100 s, therefore, consumes only 1 X 10 mol of analyte if = 1. For an analyte with a molecular weight of 100 g/mol, 1 X 10 mol corresponds to only 10 pg. The concentration of analyte in the electrochemical cell, however, must be sufficient to allow an accurate determination of the end point. When using visual end points, coulometric titrations require solution concentrations greater than 10 M and, as with conventional titrations, are limited to major and minor analytes. A coulometric titration to a preset potentiometric end point is feasible even with solution concentrations of 10 M, making possible the analysis of trace analytes. [Pg.507]

Precision Precision is determined by the uncertainties of measuring current, time, and the end point in controlled-current coulometry and of measuring charge in controlled-potential coulometry. Precisions of +0.1-0.3% are routinely obtained for coulometric titrations, and precisions of +0.5% are typical for controlled-potential coulometry. [Pg.508]

Time, Cost, and Equipment Controlled-potential coulometry is a relatively time-consuming analysis, with a typical analysis requiring 30-60 min. Coulometric titrations, on the other hand, require only a few minutes and are easily adapted for automated analysis. Commercial instrumentation for both controlled-potential and controlled-current coulometry is available and is relatively inexpensive. Low-cost potentiostats and constant-current sources are available for less than 1000. [Pg.508]

Coulometry (5) is not usually the technique employed. Even in the absence of kinetics, the several minutes required for the electrolysis seems excessive and destmction of the sample is not a desirable result. Furthermore, coulometric precision can be exceptionally poor at low concentration, and currents almost never decay to zero because of the trace contaminants present. One has to decide when zero current has been obtained. [Pg.52]

For coulometric analysis, the substance being examined must react in 100% current yields [i.e., other (secondary) reactions must be entirely absent]. In efforts to avoid side reactions, coulometry most often is performed potentiostatically (amperometrically) (i.e., the electrode potential is kept constant during the experiment), and the current consumed at the electrode is measured. The current is highest at the start of the... [Pg.388]

Nonspectroscopic detection schemes are generally based on ionisation (e.g. FID, PID, ECD, MS) or thermal, chemical and (electro)chemical effects (e.g. CL, FPD, ECD, coulometry, colorimetry). Thermal detectors generally exhibit a poor selectivity. Electrochemical detectors are based on the principles of capacitance (dielectric constant detector), resistance (conductivity detector), voltage (potentiometric detector) and current (coulometric, polarographic and amperometric detectors) [35]. [Pg.179]

Coulometry and amperometry can be distinguished by the extent to which the analyte undergoes a Faradaic reaction at the working electrode, namely complete and partial, respectively. Coulometry is essentially high-efficiency amperometry with working electrodes of large surface area. Successful coulometric or amperometric detection can result only if the applied potential is chosen correctly. [Pg.673]

The techniques of voltammetry/polarography, atomic absorption, ICP, etc., have in most cases supplanted the coulometric approach for the determination of inorganic analytes. Coulometry and the use of coulometry in food analysis have recently been reviewed [473,476]. [Pg.673]

The way in which these alternatives with their particular measuring characteristics are carried out can be best described by (1) controlled-potential coulometry and (2) coulometric titration (controlled-current coulometry). Both methods require an accurate measurement of the number of coulombs consumed, for which the following instrumental possibilities are available (a) chemical coulometers, (b) electrochemical coulometers and (c) electronic coulometers. [Pg.233]

Now returning to the coulometric analysis proper we can. say that any determination that can be carried out by voltammetry is also possible by coulometry whether it should be done by means of the controlled-potential or the titration (constant-current) method much depends on the electrochemical properties of the analyte itself and on additional circumstances both methods, because they are based on bulk electrolysis, require continuous stirring. [Pg.234]


See other pages where Coulometry coulometric is mentioned: [Pg.777]    [Pg.267]    [Pg.624]    [Pg.961]    [Pg.1085]    [Pg.25]    [Pg.250]    [Pg.267]    [Pg.624]    [Pg.777]    [Pg.267]    [Pg.624]    [Pg.961]    [Pg.1085]    [Pg.25]    [Pg.250]    [Pg.267]    [Pg.624]    [Pg.113]    [Pg.497]    [Pg.532]    [Pg.771]    [Pg.531]    [Pg.534]    [Pg.534]    [Pg.860]    [Pg.25]    [Pg.673]    [Pg.673]    [Pg.673]    [Pg.234]   


SEARCH



Coulometr

Coulometric

Coulometry

Coulometry coulometric titration

© 2024 chempedia.info