Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Refractories corrosion

Castables are more convenient refractories than bricks at this time. The main principles for the structure of corrosion refractories (castables and bricks) that are resistant to A1 are low porosity (< 13-15%) and low gas permeability (<0.4—0.5 pm ), while most pores are smaller than 3—4 pm. [Pg.223]

The Zond VD - 96 is intended for the detection of cracks, precipitates, inclusions etc. and corrosive defects with the preliminary estimation of their depth in various objects of magnetic and non - magnetic steels, non-ferrous and refractory metals and welds including coatings. [Pg.342]

The industrial value of furfuryl alcohol is a consequence of its low viscosity, high reactivity, and the outstanding chemical, mechanical, and thermal properties of its polymers, corrosion resistance, nonburning, low smoke emission, and exceUent char formation. The reactivity profile of furfuryl alcohol and resins is such that final curing can take place at ambient temperature with strong acids or at elevated temperature with latent acids. Major markets for furfuryl alcohol resins include the production of cores and molds for casting metals, corrosion-resistant fiber-reinforced plastics (FRPs), binders for refractories and corrosion-resistant cements and mortars. [Pg.80]

The furnace is constmcted with a steel shell lined with high temperature refractory (see Refractories). Refractory type and thickness are deterrnined by the particular need. Where combustion products include corrosive gases such as sulfur dioxide or hydrogen chloride, furnace shell temperatures are maintained above about 150—180°C to prevent condensation and corrosion on the inside carbon steel surfaces. Where corrosive gases are not present, insulation is sized to maintain a shell temperature below 60°C to protect personnel. [Pg.54]

In wetted-wall units, the walls of a tall circular, slightly tapered combustion chamber are protected by a high volume curtain of cooled acid flowing down inside the wall. Phosphoms is atomized by compressed air or steam into the top of the chamber and burned in additional combustion air suppHed by a forced or induced draft fan. Wetted-waU. plants use 25—50% excess combustion air to reduce the tail-gas volume, resulting in flame temperatures in excess of 2000°C. The combustion chamber maybe refractory lined or made of stainless steel. Acid sprays at the bottom of the chamber or in a subsequent, separate spraying chamber complete the hydration of phosphoms pentoxide. The sprays also cool the gas stream to below 100°C, thereby minimising corrosion to the mist-collecting equipment (typically type 316 stainless steel). [Pg.327]

Ruthenium and osmium have hep crystal stmetures. These metals have properties similar to the refractory metals, ie, they are hard, britde, and have relatively poor oxidation resistance (see Refractories). Platinum and palladium have fee stmetures and properties akin to gold, ie, they are soft, ductile, and have excellent resistance to oxidation and high temperature corrosion. [Pg.163]

Refractories. Calcined alumina is used in the bond matrix to improve the refractoriness, high temperature strength/creep resistance, and abrasion/corrosion resistance of refractories (1,2,4,7). The normal, coarse (2 to 5 )J.m median) crystalline, nominally 100% a-Al202, calcined aluminas ground to 95% —325 mesh mesh are used to extend the particle size distribution of refractory mixes, for alumina enrichment, and for reaction with... [Pg.162]

Refractories are materials that resist the action of hot environments by containing heat energy and hot or molten materials (1). There is no weU-estabhshed line of demarcation between those materials that are and those that are not refractory. The abiUty to withstand temperatures above 1100°C without softening has, however, been cited as a practical requirement of industrial refractory materials (see Ceramics). The type of refractories used in any particular apphcation depends on the critical requirements of the process. For example, processes that demand resistance to gaseous orHquid corrosion require low permeabihty, high physical strength, and abrasion resistance. Conditions that demand low thermal conductivity may require entirely different refractories. Combinations of several refractories are generally employed. [Pg.22]

Chemically Functional. Refractory coatings are used for corrosion-resistant high temperature service in gas turbine and diesel engines, components such as cmcibles, thermocouple protection tubing, valve parts, etc. [Pg.50]

Properties. Uranium metal is a dense, bright silvery, ductile, and malleable metal. Uranium is highly electropositive, resembling magnesium, and tarnishes rapidly on exposure to air. Even a poHshed surface becomes coated with a dark-colored oxide layer in a short time upon exposure to air. At elevated temperatures, uranium metal reacts with most common metals and refractories. Finely divided uranium reacts, even at room temperature, with all components of the atmosphere except the noble gases. The silvery luster of freshly cleaned uranium metal is rapidly converted first to a golden yellow, and then to a black oxide—nitride film within three to four days. Powdered uranium is usually pyrophoric, an important safety consideration in the machining of uranium parts. The corrosion characteristics of uranium have been discussed in detail (28). [Pg.319]

Approximately 5% of the U.S. consumption of is in agriculture. Boron is a necessary trace nutrient for plants and is added in small quantities to a number of fertilizers. Borates are also used in crop sprays for fast rehef of boron deficiency. Borates, when apphed at relatively high concentration, act as nonselective herbicides. Small quantities of borates are used in the manufacture of alloys and refractories (qv). Molten borates readily dissolve other metal oxides usage as a flux in metallurgy is an important apphcation. Other important small volume apphcations for borates are in fire retardants for both plastics and ceUulosic materials, in hydrocarbon fuels for fungus control, and in automotive antifreeze for corrosion control (see Corrosion and corrosion inhibitors). Borates are used as neutron absorbers in nuclear reactors. Several borates, which are registered with the Environmental Protection Agency (EPA) can be used for insecticidal purposes, eg, TIM-BOR. [Pg.205]


See other pages where Refractories corrosion is mentioned: [Pg.29]    [Pg.29]    [Pg.24]    [Pg.245]    [Pg.56]    [Pg.121]    [Pg.79]    [Pg.305]    [Pg.320]    [Pg.326]    [Pg.110]    [Pg.116]    [Pg.127]    [Pg.447]    [Pg.54]    [Pg.54]    [Pg.59]    [Pg.25]    [Pg.133]    [Pg.136]    [Pg.136]    [Pg.462]    [Pg.7]    [Pg.15]    [Pg.50]    [Pg.52]    [Pg.57]    [Pg.327]    [Pg.351]    [Pg.163]    [Pg.173]    [Pg.97]    [Pg.32]    [Pg.37]    [Pg.39]    [Pg.40]    [Pg.40]    [Pg.47]    [Pg.7]    [Pg.336]    [Pg.432]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Corrosion of refractories

Refractories high-temperature corrosion

Refractories, Corrosion testing

Refractory metals corrosion resistance

The corrosion of refractories by liquid metals and slags

© 2024 chempedia.info