Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion conductivity

As with other factors, no direct statements can be made relating the reaction of a soil to its corrosive properties. Extremely acid soils (pH 4 0 and lower) can cause rapid corrosion of bare metals of most types. This degree of acidity is not common, being limited to certain-bog soils and soils made acid by large accumulations of acidic plant materials such as needles in a coniferous forest. Most soils range from pH5 0 to pH8 0, and corrosion rates are apt to depend on many other environmental factors rather than soil reaction per se. The 45-year study of underground corrosion conducted by the United States Bureau of Standards included study of the effect of soils of varying pH on different metals, and extensive data were reported. [Pg.383]

Early research on recovery boiler corrosion conducted in Sweden and Finland was summarized by Moberg [2/2]. This work involved a field study and some laboratory... [Pg.804]

Chemical (oxidation, galvanic corrosion, conductive dusts, condensation, drips, spray, immersion, icing, etc.)... [Pg.197]

Finally, other tests to control jet fuel corrosivity towards certain metals (copper and silver) are used in aviation. The corrosion test known as the copper strip (NF M 07-015) is conducted by immersion in a thermostatic bath at 100°C, under 7 bar pressure for two hours. The coloration should not exceed level 1 (light yellow) on a scale of reference. There is also the silver strip corrosion test (IP 227) required by British specifications (e.g., Rolls Royce) in conjunction with the use of special materials. The value obtained should be less than 1 after immersion at 50°C for four hours. [Pg.251]

The war itself also drove the development of improved and miniaturised electronic components for creating oscillators and amplifiers and, ultimately, semiconductors, which made practical the electronic systems needed in portable eddy current test instruments. The refinement of those systems continues to the present day and advances continue to be triggered by performance improvements of components and systems. In the same way that today s pocket calculator outperforms the large, hot room full of intercormected thermionic valves that I first saw in the 50 s, so it is with eddy current instrumentation. Today s handheld eddy current inspection instrument is a powerful tool which has the capability needed in a crack detector, corrosion detector, metal sorter, conductivity meter, coating thickness meter and so on. [Pg.273]

Since metals have very high conductivities, metal corrosion is usually electrochemical in nature. The tenn electrochemical is meant to imply the presence of an electrode process, i.e. a reaction in which free electrons participate. For metals, electrochemical corrosion can occur by loss of metal atoms tluough anodic dissolution, one of the fiindamental corrosion reactions. As an example, consider a piece of zinc, hereafter referred to as an electrode, inunersed in water. Zinc tends to dissolve in water, setting up a concentration of Zn ions very near the electrode... [Pg.922]

Clearly then, if either water or oxygen are absent, corrosion cannot occur. The presence of an electrolyte, which imparts conductivity to the solution, increases the rate of corrosion. [Pg.399]

The most direct effect of defects on tire properties of a material usually derive from altered ionic conductivity and diffusion properties. So-called superionic conductors materials which have an ionic conductivity comparable to that of molten salts. This h conductivity is due to the presence of defects, which can be introduced thermally or the presence of impurities. Diffusion affects important processes such as corrosion z catalysis. The specific heat capacity is also affected near the melting temperature the h capacity of a defective material is higher than for the equivalent ideal crystal. This refle the fact that the creation of defects is enthalpically unfavourable but is more than comp sated for by the increase in entropy, so leading to an overall decrease in the free energy... [Pg.639]

This last solution should be prepared slowly as it is quite exothermic. Set all three aside in a freezer. Now prepare the mixing apparatus which will be a stainless steel "mixing bowl" suspended In the ice/salt bath made earlier. We use a stainless steel bowl here so that heat transfer will be maximal, while preventing any corrosive interaction. A glass bowl will not be sufficient for larger scale preparations as it will not conduct heat fast enough to prevent the reactants from going over IOC (at which point the Haloamide will decompose and you ll have to start over). Take the Sodium Hydroxide solution out of the freezer once it is cool, but not cold. [Pg.262]

Polymer Electrolyte Fuel Cell. The electrolyte in a PEFC is an ion-exchange (qv) membrane, a fluorinated sulfonic acid polymer, which is a proton conductor (see Membrane technology). The only Hquid present in this fuel cell is the product water thus corrosion problems are minimal. Water management in the membrane is critical for efficient performance. The fuel cell must operate under conditions where the by-product water does not evaporate faster than it is produced because the membrane must be hydrated to maintain acceptable proton conductivity. Because of the limitation on the operating temperature, usually less than 120°C, H2-rich gas having Htde or no ([Pg.578]

Another attractive commercial route to MEK is via direct oxidation of / -butenes (34—39) in a reaction analogous to the Wacker-Hoechst process for acetaldehyde production via ethylene oxidation. In the Wacker-Hoechst process the oxidation of olefins is conducted in an aqueous solution containing palladium and copper chlorides. However, unlike acetaldehyde production, / -butene oxidation has not proved commercially successflil because chlorinated butanones and butyraldehyde by-products form which both reduce yields and compHcate product purification, and also because titanium-lined equipment is required to withstand chloride corrosion. [Pg.489]

Silver reduces the oxygen evolution potential at the anode, which reduces the rate of corrosion and decreases lead contamination of the cathode. Lead—antimony—silver alloy anodes are used for the production of thin copper foil for use in electronics. Lead—silver (2 wt %), lead—silver (1 wt %)—tin (1 wt %), and lead—antimony (6 wt %)—silver (1—2 wt %) alloys ate used as anodes in cathodic protection of steel pipes and stmctures in fresh, brackish, or seawater. The lead dioxide layer is not only conductive, but also resists decomposition in chloride environments. Silver-free alloys rapidly become passivated and scale badly in seawater. Silver is also added to the positive grids of lead—acid batteries in small amounts (0.005—0.05 wt %) to reduce the rate of corrosion. [Pg.61]

Flame spray metallising is widely used for the protection of metal against corrosion, especially for in situ protection of stmctural members. The principal metal used for spraying of plastics is sine. Aluminum and copper are also used. If the distance from the part is too great, the zinc solidifies before it touches the part and adhesion is extremely poor. If the molten zinc oxidizes, conductivity and adhesion are poor. If the distance is too short, the zinc is too hot and the plastic warps or degrades. These coatings are not as dense as electrically deposited coatings because of numerous pores, oxide inclusions, and discontinuities where particles have incompletely coalesced. [Pg.135]

Ziac foil coated with a conductive, pressure-sensitive adhesive is used for repair of other ziac coatings or for imparting corrosion resistance at field sites. The 0.08-mm ziac tape or sheet has a 0.025-mm coaductive adhesive. The laminate is cut to size and pressed tightly to activate the adhesive. Conductive tape can be wrapped around pipe, especially around welds or connections. The corrosion resistance of this material is iatermediate between galvanized or thermally sprayed coatings and zinc-filled paints (21,50). [Pg.137]

Electrowinning from Aqueous Solutions. Electrowinriing is the recovery of a metal by electrochemical reduction of one of its compounds dissolved in a suitable electrolyte. Various types of solutions can be used, but sulfuric acid and sulfate solutions are preferred because these are less corrosive than others and the reagents are fairly cheap. From an electrochemical viewpoint, the high mobiUty of the hydrogen ion leads to high conductivity and low ohmic losses, and the sulfate ion is electrochemicaHy inert under normal conditions. [Pg.174]

Naphthenic acids have been the topic of numerous studies extending over many years. Originally recovered from the petroleum distillates to minimise corrosion of refinery equipment, they have found wide use as articles of commerce in metal naphthenates and other derivatives. A comprehensive overview of the uses of naphthenic acid and its derivatives can be found in References 1 and 2. A review of the extensive research on carboxyUc acids in petroleum conducted up to 1955 is available (3), as is a more recent review of purification, identification, and uses of naphthenic acid (4). [Pg.509]


See other pages where Corrosion conductivity is mentioned: [Pg.161]    [Pg.161]    [Pg.161]    [Pg.1]    [Pg.1595]    [Pg.213]    [Pg.161]    [Pg.161]    [Pg.161]    [Pg.1]    [Pg.1595]    [Pg.213]    [Pg.434]    [Pg.405]    [Pg.1064]    [Pg.1908]    [Pg.2732]    [Pg.1216]    [Pg.140]    [Pg.440]    [Pg.318]    [Pg.321]    [Pg.325]    [Pg.494]    [Pg.55]    [Pg.548]    [Pg.440]    [Pg.127]    [Pg.128]    [Pg.392]    [Pg.334]    [Pg.119]    [Pg.132]    [Pg.134]    [Pg.26]    [Pg.52]    [Pg.57]    [Pg.126]    [Pg.130]    [Pg.131]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



© 2024 chempedia.info