Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion charged metal surface

The oxidation products are almost insoluble and lead to the formation of protective films. They promote aeration cells if these products do not cover the metal surface uniformly. Ions of soluble salts play an important role in these cells. In the schematic diagram in Fig. 4-1 it is assumed that from the start the two corrosion partial reactions are taking place at two entirely separate locations. This process must quickly come to a complete standstill if soluble salts are absent, because otherwise the ions produced according to Eqs. (2-21) and (2-17) would form a local space charge. Corrosion in salt-free water is only possible if the two partial reactions are not spatially separated, but occur at the same place with equivalent current densities. The reaction products then react according to Eq. (4-2) and in the subsequent reactions (4-3a) and (4-3b) to form protective films. Similar behavior occurs in salt-free sandy soils. [Pg.140]

Resistance overpotential i/r Since in corrosion the resistance of the metallic path for charge transfer is negligible, resistance overpotential ijr is determined by factors associated with the solution or with the metal surface. Thus resistance overpotential may be defined as... [Pg.91]

When corrosion occurs, if the cathodic reactant is in plentiful supply, it can be shown both theoretically and practically that the cathodic kinetics are semi-logarithmic, as shown in Fig. 10.4. The rate of the cathodic reaction is governed by the rate at which electrical charge can be transferred at the metal surface. Such a process responds to changes in electrode potential giving rise to the semi-logarithmic behaviour. [Pg.113]

The corrosion of iron occurs particularly rapidly when an aqueous solution is present. This is because water that contains ions provides an oxidation pathway with an activation energy that is much lower than the activation energy for the direct reaction of iron with oxygen gas. As illustrated schematically in Figure 19-21. oxidation and reduction occur at different locations on the metal surface. In the absence of dissolved ions to act as charge carriers, a complete electrical circuit is missing, so the redox reaction is slow, hi contrast, when dissolved ions are present, such as in salt water and acidic water, corrosion can be quite rapid. [Pg.1407]

Metals are subject to electrochemical corrosion in the presence of water Metal atoms lose electrons to become positively charged metal ions that go into solution. These then react with other chemical species in the soil ground-water to form solid corrosion products (e.g., metal oxides, hydroxides, sulfates). It is these solid corrosion products that often form a colored matrix with soil particles around the corroding object (Cronyn 1990). The initial formation of the metal ions takes place at a site on the metal known as the anode, whereas the electrons produced consumed by another reaction with an electron acceptor (the cathode). Due to the electrical conductivity of metals the location of the anode and cathode can be at different locations on the metal surface. In the presence of water and oxygen the cathodic reaction is... [Pg.176]

Since metals become unstable (undergo the events named above) when they come into contact with the moist atmosphere, it is reasonable to conclude that this instability of metals results from charge-transfer reactions at their interfaces. This is why the rate of corrosive destruction of a metal s surface is greatly reduced by removal of moisture from the atmosphere. Keeping a metal in a vacuum is equivalent to removal of the electrolyte in contact with the metal and therefore to the prevention of charge-transfer reactions. Thus, the spontaneous instability (or corrosion) of metals results from the charge-transfer reactions at the electrified interface between the metal and the moist, CO 2 or NaCl-containing air (Wolaston, de la Rive). [Pg.125]

Corrosion can also occur by a direct chemical reaction of a metal with its environment such as the formation of a volatile oxide or compounds, the dissolution of metals in fused metal halides. The reaction of molybdenum with oxygen and the reaction of iron or aluminum with chlorine are typical examples of metal/gas chemical reactions. In these reactions, the metal surface stays film-free and there is no transport of electrical charge.1 Fontana and Staehle2 have stated that corrosion should include the reaction of metals, glasses, ionic solids, polymeric solids and composites with environments that embrace liquid metals, gases, aqueous and other nonaqueous solutions. [Pg.332]

The earlier sections of this chapter discuss the mixed electrode as the interaction of anodic and cathodic reactions at respective anodic and cathodic sites on a metal surface. The mixed electrode is described in terms of the effects of the sizes and distributions of the anodic and cathodic sites on the potential measured as a function of the position of a reference electrode in the adjacent electrolyte and on the distribution of corrosion rates over the surface. For a metal with fine dispersions of anodic and cathodic reactions occurring under Tafel polarization behavior, it is shown (Fig. 4.8) that a single mixed electrode potential, Ecorr, would be measured by a reference electrode at any position in the electrolyte. The counterpart of this mixed electrode potential is the equilibrium potential, E M (or E x), associated with a single half-cell reaction such as Cu in contact with Cu2+ ions under deaerated conditions. The forms of the anodic and cathodic branches of the experimental polarization curves for a single half-cell reaction under charge-transfer control are shown in Fig. 3.11. It is emphasized that the observed experimental curves are curved near i0 and become asymptotic to E M at very low values of the external current. In this section, the experimental polarization of mixed electrodes is interpreted in terms of the polarization parameters of the individual anodic and cathodic reactions establishing the mixed electrode. The interpretation then leads to determination of the corrosion potential, Ecorr, and to determination of the corrosion current density, icorr, from which the corrosion rate can be calculated. [Pg.150]


See other pages where Corrosion charged metal surface is mentioned: [Pg.12]    [Pg.12]    [Pg.12]    [Pg.148]    [Pg.481]    [Pg.619]    [Pg.1949]    [Pg.412]    [Pg.266]    [Pg.1328]    [Pg.90]    [Pg.165]    [Pg.227]    [Pg.379]    [Pg.736]    [Pg.812]    [Pg.1122]    [Pg.10]    [Pg.215]    [Pg.49]    [Pg.87]    [Pg.190]    [Pg.486]    [Pg.158]    [Pg.334]    [Pg.118]    [Pg.234]    [Pg.165]    [Pg.340]    [Pg.692]    [Pg.409]    [Pg.266]    [Pg.151]    [Pg.868]    [Pg.85]    [Pg.325]    [Pg.19]    [Pg.1814]    [Pg.284]    [Pg.571]    [Pg.6]    [Pg.128]    [Pg.172]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Charged surfaces

Corrosion metals

Corrosion surface

Corrosion, metallic

Metallic charge

Surface charge

Surface charges surfaces

Surface charging

© 2024 chempedia.info