Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass- and Heat-transfer Correlations

It comes up clearly from these figures that one way not to correlate heat and mass transfer coefficients, at least in fluidized bed systems, at low Reynolds is a correlation of the... [Pg.189]

Heat- and Mass-Transfer Estimates Many rotary dryer studies have correlated heat- and mass-transfer data in terms of an overall volumetric heat-transfer coefficient U a [W/(m K)], defined by... [Pg.1396]

HEAT AND MASS TRANSFER TABLE 5-21 Mass Transfer Correlations for a Single Flat Plate or Disk—Transfer to or from Plate to Fluid Concluded)... [Pg.606]

Glaser and Thodos [Am. Jn.st. Chem. Eng. J., 4, 63 (1958)] give a correlation involving individual particle shape and bed porosity. Kunii and Suzuki [Jnt. ]. Heat Mass Tran.sfer, 10, 845 (1967)] discuss heat and mass transfer in packed beds of fine particles. [Pg.1059]

Not only is the type of flow related to the impeller Reynolds number, but also such process performance characteristics as mixing time, impeller pumping rate, impeller power consumption, and heat- and mass-transfer coefficients can be correlated with this dimensionless group. [Pg.1629]

Correlations of heat and mass-transfer rates are fairly well developed and can be incorporated in models of a reaction process, but the chemical rate data must be determined individually. The most useful rate data are at constant temperature, under conditions where external mass transfer resistance has been avoided, and with small particles... [Pg.2070]

In this section the correlations used to determine the heat and mass transfer rates are presented. The convection process may be either free or forced convection. In free convection fluid motion is created by buoyancy forces within the fluid. In most industrial processes, forced convection is necessary in order to achieve the most economic heat exchange. The heat transfer correlations for forced convection in external and internal flows are given in Tables 4.8 and 4.9, respectively, for different conditions and geometries. [Pg.115]

The mass transfer correlations are obtained by replacing Nu by Sh and Pr by Sc according to the heat and mass transfer analogy. [Pg.115]

The correlation studies of heat and mass transfer in pellet beds have been investigated by many, usually in terms of the. /-factors (113-115). According to Chilton and Colburn the two. /-factors are equal in value to one half of the Fannings friction factor / used in the calculation of pressure drop. The. /-factors depend on the Reynolds number raised to a factor varying from —0.36 to —0.68, so that the Nusselt number depends on the Reynolds number raised to a factor varying from 0.64 to 0.32. In the range of the Reynolds number from 10 to 170 in the pellet bed, jd should vary from 0.5 to 0.1, which yields a Nusselt number from 4.4 to 16.1. The heat and mass transfer to wire meshes has received much less attention (110,116). The correlation available shows that the /-factor varies as (Re)-0-41, so that the Nusselt number varies as (Re)0-69. In the range of the Reynolds number from 20 to 420, the j-factor varies from 0.2 to 0.05, so that the Nusselt number varies from 3.6 to 18.6. The Sherwood number for CO is equal to 1.05 Nu, but the Sherwood number for benzene is 1.31 Nu. [Pg.102]

Chisholm, D. Inti. Jl. Heat and Mass Transfer 10 (1967) 1767. A theoretical basis for the Lockharl-Martinelli correlation for two-phase flow. [Pg.227]

Gamson et a/.t49) have successfully used the. /-factor method to correlate their experimental results for heat and mass transfer between a bed of granular solids and a gas stream. [Pg.651]

To provide the pr equisite knowledge for designing the three-phase fluidized-bed reactors with new modes, the hydrodynamics such as phase holdup, mixing and bubble properties and heat and mass transfer characteristics in the reactors have to be determined. Thus, in this study, the hydrodynamics and heat and mass transfer characteristics in the inverse and circulating three-phase fluidized-bed reactors for wastewater treatment in the present and previous studies have been summarized. Correlations for the hydrod3aiamics as well as mass and heat transfer coefficients are proposed. The areas wherein future research should be undertaken to improve... [Pg.101]

Celata, G. P, M. Cumo, and A. Mariani, 1994c, Assessment of Correlations and Models for the Prediction of CHF in Subcooled Flow Boiling, Int. J. Heat and Mass Transfer 37(2) 237—255. (5)... [Pg.526]

In the design of an industrial scale reactor for a new process, or an old one that employs a new catalyst, it is common practice to carry out both bench and pilot plant studies before finalizing the design of the commercial scale reactor. The bench scale studies yield the best information about the intrinsic chemical kinetics and the associated rate expression. However, when taken alone, they force the chemical engineer to rely on standard empirical correlations and prediction methods in order to determine the possible influence of heat and mass transfer processes on the rates that will be observed in industrial scale equipment. The pilot scale studies can provide a test of the applicability of the correlations and an indication of potential limitations that physical processes may place on conversion rates. These pilot plant studies can provide extremely useful information on the temperature distribution in the reactor and on contacting patterns when... [Pg.246]

Use the j factor correlations of Section 12.4 to determine appropriate heat and mass transfer coefficients. [Pg.491]

The convective mass transfer coefficient hm can be obtained from correlations similar to those of heat transfer, i.e. Equation (1.12). The Nusselt number has the counterpart Sherwood number, Sh = hml/Di, and the counterpart of the Prandtl number is the Schmidt number, Sc = p/pD. Since Pr k Sc k 0.7 for combustion gases, the Lewis number, Le = Pr/Sc = k/pDcp is approximately 1, and it can be shown that hm = hc/cp. This is a convenient way to compute the mass transfer coefficient from heat transfer results. It comes from the Reynolds analogy, which shows the equivalence of heat transfer with its corresponding mass transfer configuration for Le = 1. Fire involves both simultaneous heat and mass transfer, and therefore these relationships are important to have a complete understanding of the subject. [Pg.17]

This can be written in terms of correlations for the coefficients of heat and mass transfer. The Chilton-Colburn factors are... [Pg.794]

Many of the results and correlations in heat and mass transfer are expressed in terms of dimensionless groups such as the Nusselt, Reynolds and Prandtl numbers. The definitions of those dimensionless groups referred to in this chapter are given in Appendix 2. [Pg.23]

No data are available for heat and mass transfer to or from disks or spheroids in free fall. When there is no secondary motion the correlations given above should apply to oblate spheroids and disks. For larger Re where secondary motion occurs, the equations given below for particles of arbitrary shape in free fall are recommended. [Pg.153]

There is conflicting evidence regarding the extent to which imposed vibrations increase particle to fluid heat and mass transfer rates (G2), with some authors even claiming that transfer rates are decreased. For sinusoidal velocity variations superimposed on steady relative motion, enhancement of transfer depends on a scale ratio A/d and a velocity ratio Af /Uj (G3). These quantities are rather like the scale and intensity of turbulence (see Chapter 10). For Af /Uj < l/2n, the vibrations do not cause reversal in the relative motion and the enhancement of mass transfer has been correlated (G3) by... [Pg.312]

The following, well-acceptable assumptions are applied in the presented models of automobile exhaust gas converters Ideal gas behavior and constant pressure are considered (system open to ambient atmosphere, very low pressure drop). Relatively low concentration of key reactants enables to approximate diffusion processes by the Fick s law and to assume negligible change in the number of moles caused by the reactions. Axial dispersion and heat conduction effects in the flowing gas can be neglected due to short residence times ( 0.1 s). The description of heat and mass transfer between bulk of flowing gas and catalytic washcoat is approximated by distributed transfer coefficients, calculated from suitable correlations (cf. Section III.C). All physical properties of gas (cp, p, p, X, Z>k) and solid phase heat capacity are evaluated in dependence on temperature. Effective heat conductivity, density and heat capacity are used for the entire solid phase, which consists of catalytic washcoat layer and monolith substrate (wall). [Pg.113]

Transfer coefficients in catalytic monolith for automotive applications typically exhibit a maximum at the channel inlet and then decrease relatively fast (within the length of several millimeters) to the limit values for fully developed concentration and temperature profiles in laminar flow. Proper heat and mass transfer coefficients are important for correct prediction of cold-start behavior and catalyst light-off. The basic issue is to obtain accurate asymptotic Nu and Sh numbers for particular shape of the channel and washcoat layer (Hayes et al., 2004 Ramanathan et al., 2003). Even if different correlations provide different kc and profiles at the inlet region of the monolith, these differences usually have minor influence on the computed outlet values of concentrations and temperature under typical operating conditions. [Pg.116]


See other pages where Mass- and Heat-transfer Correlations is mentioned: [Pg.52]    [Pg.96]    [Pg.1291]    [Pg.71]    [Pg.290]    [Pg.148]    [Pg.101]    [Pg.325]    [Pg.110]    [Pg.106]    [Pg.557]    [Pg.327]    [Pg.184]    [Pg.357]    [Pg.18]    [Pg.346]    [Pg.881]    [Pg.57]    [Pg.232]    [Pg.317]    [Pg.123]    [Pg.75]    [Pg.61]   


SEARCH



Mass and heat transfer

Mass heating

Mass transfer correlations

Transfer Correlations

© 2024 chempedia.info