Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cores spherical

Perisorb superficially porous supports with an about 1-2 mui chromatographically active layer around a glass core, spherical (30-40 iinij. [Pg.205]

The latest development in the subfield of surface-modified semiconductor nanocrystals is the synthesis of three-layered colloidal particles [55-58]. The novel structures consist of a size-quantized semiconductor particle acting as the core spherically covered by several monolayers of another semiconductor material, which by themselves are surrounded by several monolayers of, again, the core material acting as the outermost shell. These particles are called quantum dot quantum wells (QDQWs) or, metaphorically, nano-onions. The more scientific naming is motivated by the analogy to real quantum wells, which are semiconductor structures with alternating layers of two semiconductor materials exhibiting quantum confinement in one dimension in at least one of the materials. [Pg.136]

Nanospheres also known as nanospheres, nanocapsules, nanocrystals, or nanoparticulates may be defined as solid core spherical particulates, which are nanometric in size. They contain... [Pg.599]

The Fixed Bed Nuclear Reactor (FBNR) concept assumes the use pressurized water reactor (PWR) technology, but incorporates hi temperature gas cooled reactor (HTGR) type fuel and the concept of a suspended fixed bed core. Spherical fuel elements are fixed in the suspended core by the flow of water coolant. Any accident signal will cut off the power to the coolant pump causing a stop in the flow. This would make the fuel elements fall out of the reactor core, driven by gravity, and enter a passively cooled fuel chamber where they would reside in a subcritical condition. The Fixed Bed Nuclear Reactor (FBNR) is a simplified version of the fluidized bed nuclear reactor concept [XII-1 to XII-9]. In the FBNR, spherical fuel elements are in a fixed position in the core therefore, there is no concern about the consequences of multiple collisions between them, an issue that may be raised about the fluidized bed concept. Relatively little work has been done for the fixed bed nuclear reactor so far, but the experiences gained from the development of a fluidized bed reactor can facilitate the development of the FBNR. [Pg.373]

Micellar structure has been a subject of much discussion [104]. Early proposals for spherical [159] and lamellar [160] micelles may both have merit. A schematic of a spherical micelle and a unilamellar vesicle is shown in Fig. Xni-11. In addition to the most common spherical micelles, scattering and microscopy experiments have shown the existence of rodlike [161, 162], disklike [163], threadlike [132] and even quadmple-helix [164] structures. Lattice models (see Fig. XIII-12) by Leermakers and Scheutjens have confirmed and characterized the properties of spherical and membrane like micelles [165]. Similar analyses exist for micelles formed by diblock copolymers in a selective solvent [166]. Other shapes proposed include ellipsoidal [167] and a sphere-to-cylinder transition [168]. Fluorescence depolarization and NMR studies both point to a rather fluid micellar core consistent with the disorder implied by Fig. Xm-12. [Pg.481]

C oniparing ihc corc-core repulsion ol lhe above two ec nations with those in the MNDO method, it can be seen that the only dil -ference is in the last term. The extra terms in the AMI core-core repulsion deline spherical Ciaiissian Tun ctioii s — the a. h, and c are adjustable parameters. AMI has between two and I onr Gaussian full ctiori s per atom, ... [Pg.294]

In a cylindrical pore the meniscus will be spherical in form, so that the two radii of curvature are equal to one another and therefore to r (Equation (3.8)). From simple geometry (Fig. 3.8) the radius r of the core is related to r by the equation... [Pg.122]

When monomers of drastically different solubiUty (39) or hydrophobicity are used or when staged polymerizations (40,41) are carried out, core—shell morphologies are possible. A wide variety of core—shell latices have found appHcation ia paints, impact modifiers, and as carriers for biomolecules. In staged polymerizations, spherical core—shell particles are made when polymer made from the first monomer is more hydrophobic than polymer made from the second monomer (42). When the first polymer made is less hydrophobic then the second, complex morphologies are possible including voids and half-moons (43), although spherical particles stiU occur (44). [Pg.24]

Other uses for coal-tar pitch include production as a binder for foundry cores, as a sealant for dry batteries, and in the manufacture of clay pigeons. PeUeted pitch used as the binder in foundry cores is a hard pitch suppHed as spherical granules which are formed by a spray-cooling process. Clay pigeons consist of disks molded from a mixture of hard pitch and a mineral filler such as clay or limestone dust. [Pg.348]

However, conductive elastomers have only ca <10 of the conductivity of soHd metals. Also, the contact resistance of elastomers changes with time when they are compressed. Therefore, elastomers are not used where significant currents must be carried or when low or stable resistance is required. Typical apphcations, which require a high density of contacts and easy disassembly for servicing, include connection between Hquid crystal display panels (see Liquid crystals) and between printed circuit boards in watches. Another type of elastomeric contact has a nonconducting silicone mbber core around which is wrapped metalized contacts that are separated from each other by insulating areas (25). A newer material has closely spaced strings of small spherical metal particles in contact, or fine soHd wires, which are oriented in the elastomer so that electrical conduction occurs only in the Z direction (26). [Pg.31]

The majority of particles in the atmosphere are spherical in shape because they are formed by condensation or cooling processes or they contain core nuclei coated with liquid. Liquid surface tension draws the material in the particle into a spherical shape. Other important particle shapes exist in the atmosphere e.g., asbestos is present as long fibers and fly ash can be irregular in shape. [Pg.25]

One of the most striking results that has emerged from the high-resolution crystallographic studies of these icosahedral viruses is that their coat proteins have the same basic core structure, that of a jelly roll barrel, which was discussed in Chapter 5. This is true of plant, insect, and mammalian viruses. In the case of the picornaviruses, VPl, VP2, and VP3 all have the same jelly roll structure as the subunits of satellite tobacco necrosis virus, tomato bushy stunt virus, and the other T = 3 plant viruses. Not every spherical virus has subunit structures of the jelly roll type. As we will see, the subunits of the RNA bacteriophage, MS2, and those of alphavirus cores have quite different structures, although they do form regular icosahedral shells. [Pg.335]

CP-1 was assembled in an approximately spherical shape with the purest graphite in the center. About 6 tons of luanium metal fuel was used, in addition to approximately 40.5 tons of uranium oxide fuel. The lowest point of the reactor rested on the floor and the periphery was supported on a wooden structure. The whole pile was surrounded by a tent of mbberized balloon fabric so that neutron absorbing air could be evacuated. About 75 layers of 10.48-cm (4.125-in.) graphite bricks would have been required to complete the 790-cm diameter sphere. However, criticality was achieved at layer 56 without the need to evacuate the air, and assembly was discontinued at layer 57. The core then had an ellipsoidal cross section, with a polar radius of 209 cm and an equatorial radius of309 cm [20]. CP-1 was operated at low power (0.5 W) for several days. Fortuitously, it was found that the nuclear chain reaction could be controlled with cadmium strips which were inserted into the reactor to absorb neutrons and hence reduce the value of k to considerably less than 1. The pile was then disassembled and rebuilt at what is now the site of Argonne National Laboratory, U.S.A, with a concrete biological shield. Designated CP-2, the pile eventually reached a power level of 100 kW [22]. [Pg.437]

The Arbeitsgemeinschaft Versuchsreaktor (AVR) and Thorium High-Temperature Reactor (THTR-300) were both helium-cooled reactors of the pebble-bed design [29,42,43]. The major design parameters of the AVR and THTR are shown in Table 10. Construction started on the AVR in 1961 and full power operation at 15MW(e) commenced in May 1967. The core of the AVR consisted of approximately 100,000 spherical pebble type fuel elements (see Section 5). The pebble bed was surrounded by a cylindrical graphite reflector and structural carbon... [Pg.450]

Fig. 14. HTGR fuel elements (a) prismatic core HTGR fuel element (b) cross section of a spherical fuel element for the pebble bed HTGR. Reprinted from [88], 1977 Ameriean Nuelear Soeiety, La Grange Park, Illinois. Fig. 14. HTGR fuel elements (a) prismatic core HTGR fuel element (b) cross section of a spherical fuel element for the pebble bed HTGR. Reprinted from [88], 1977 Ameriean Nuelear Soeiety, La Grange Park, Illinois.
This view is supported by our observation of hemi-spherically capped single-wall and multi-wall tubes on the same samples. It suggests that the Cf,o-derived tube could be the core of possible multilayer concentric graphitic tubes. After the single-shell tube has been... [Pg.67]

Another linearization of the HNC closure leads to the mean spherical approximation (MSA). For a fluid with a hard core, the MSA is... [Pg.146]

Quite recently, Pini et al. [56] have reported a new, thermodynamically self-consistent approximation to the OZ relation for a fluid of spherical particles for a pair potential given by a hard-core repulsion and a Yukawa attractive tail (Eq. (6)). The closure to the OZ equation they have proposed has the form... [Pg.150]

Fireball A burning fuel-air cloud whose energy is emitted primarily in the form of radiant heat. The inner core of the cloud consists almost completely of fuel, whereas the outer layer (where ignition first occurs) consists of a flammable fuel-air mixture. As the buoyancy forces of hot gases increase, the burning cloud tends to rise, expand, and assume a spherical shape. [Pg.398]

The factors tliat affect miconfined I apor cloud explosions me not well understood. In a model developed by William, it is assmned tliat ignition occurs at a point source, tliat tlie flame front travels out from tlie core at a flame speed S, and tliat the pressure waves produced by the flame generate a weak shock wave tliat travels ahead of tlie flame with a time-dependent velocity. Tlie equation for the flame speed for spherical systems is... [Pg.228]

Generally, the number of the shell chains in a microsphere ranges from a few hundred to a few thousand. The range of the diameter of the core is from 10-100 nm. Such a core-shell structure is very similar to the (AB)n type star block copolymers, which have many arms and spherical polymer micelles of the block or graft copolymers formed in selective solvents that are good for the corona sequence and bad for the core sequence. In fact, many theoretical investigations of the chain con-... [Pg.601]


See other pages where Cores spherical is mentioned: [Pg.72]    [Pg.72]    [Pg.72]    [Pg.72]    [Pg.1469]    [Pg.2392]    [Pg.2587]    [Pg.2587]    [Pg.2589]    [Pg.112]    [Pg.351]    [Pg.11]    [Pg.28]    [Pg.323]    [Pg.213]    [Pg.222]    [Pg.55]    [Pg.194]    [Pg.139]    [Pg.270]    [Pg.363]    [Pg.77]    [Pg.344]    [Pg.446]    [Pg.452]    [Pg.475]    [Pg.503]    [Pg.1]    [Pg.318]    [Pg.642]    [Pg.669]   
See also in sourсe #XX -- [ Pg.200 ]

See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Core spherical agglomerates

Shrinking Core Model for Spherical Particles of Unchanging Size

© 2024 chempedia.info