Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Core, acid

In the table the pK for CO(OH)2 is corrected (from the value given in parenthesis) for the influence of the partial pressure. Some of the pK values are estimated. However, from the tabulation it is fully clear that the deprotonation is very much predominated by the degree of oxolation of the core acid (cat)ion. The oxidation state and the degree of hydroxylation has only a second-hand effect on the protonation strength. It is well known that the first deprotonation can for inorganic adds be described as ... [Pg.451]

Surfactants have also been of interest for their ability to support reactions in normally inhospitable environments. Reactions such as hydrolysis, aminolysis, solvolysis, and, in inorganic chemistry, of aquation of complex ions, may be retarded, accelerated, or differently sensitive to catalysts relative to the behavior in ordinary solutions (see Refs. 205 and 206 for reviews). The acid-base chemistry in micellar solutions has been investigated by Drummond and co-workers [207]. A useful model has been the pseudophase model [206-209] in which reactants are either in solution or solubilized in micelles and partition between the two as though two distinct phases were involved. In inverse micelles in nonpolar media, water is concentrated in the micellar core and reactions in the micelle may be greatly accelerated [206, 210]. The confining environment of a solubilized reactant may lead to stereochemical consequences as in photodimerization reactions in micelles [211] or vesicles [212] or in the generation of radical pairs [213]. [Pg.484]

The industrial value of furfuryl alcohol is a consequence of its low viscosity, high reactivity, and the outstanding chemical, mechanical, and thermal properties of its polymers, corrosion resistance, nonburning, low smoke emission, and exceUent char formation. The reactivity profile of furfuryl alcohol and resins is such that final curing can take place at ambient temperature with strong acids or at elevated temperature with latent acids. Major markets for furfuryl alcohol resins include the production of cores and molds for casting metals, corrosion-resistant fiber-reinforced plastics (FRPs), binders for refractories and corrosion-resistant cements and mortars. [Pg.80]

An aqueous PVA solution containing a small amount of boric acid may be extmded into an aqueous alkaline salt solution to form a gel-like fiber (15,16). In this process, sodium hydroxide penetrates rapidly into the aqueous PVA solution extmded through orifices to make it alkaline, whereby boric acid cross-links PVA molecules with each other. The resulting fiber is provided with sufficient strength to withstand transportation to the next process step and its cross section does not show a distinct skin/core stmcture. [Pg.339]

Permanent chemical crimp can be obtained by creating an asymmetric arrangement of the skin and the core parts of the fiber cross section. Skin cellulose is more highly ordered than core cellulose and shrinks more on drying. If, during filament formation in the spin bath, the skin can be forced to burst open to expose fresh viscose to the acid, a fiber with differing shrinkage potential from side-to-side is made, and crimp should be obtained (Fig. 5a). [Pg.349]

The aromatic core or framework of many aromatic compounds is relatively resistant to alkylperoxy radicals and inert under the usual autoxidation conditions (2). Consequentiy, even somewhat exotic aromatic acids are resistant to further oxidation this makes it possible to consider alkylaromatic LPO as a selective means of producing fine chemicals (206). Such products may include multifimctional aromatic acids, acids with fused rings, acids with rings linked by carbon—carbon bonds, or through ether, carbonyl, or other linkages (279—287). The products may even be phenoUc if the phenoUc hydroxyl is first esterified (288,289). [Pg.344]

Figure 4a represents interfacial polymerisation encapsulation processes in which shell formation occurs at the core material—continuous phase interface due to reactants in each phase diffusing and rapidly reacting there to produce a capsule shell (10,11). The continuous phase normally contains a dispersing agent in order to faciUtate formation of the dispersion. The dispersed core phase encapsulated can be water, or a water-immiscible solvent. The reactant(s) and coreactant(s) in such processes generally are various multihmctional acid chlorides, isocyanates, amines, and alcohols. For water-immiscible core materials, a multihmctional acid chloride, isocyanate or a combination of these reactants, is dissolved in the core and a multihmctional amine(s) or alcohol(s) is dissolved in the aqueous phase used to disperse the core material. For water or water-miscible core materials, the multihmctional amine(s) or alcohol(s) is dissolved in the core and a multihmctional acid chloride(s) or isocyanate(s) is dissolved in the continuous phase. Both cases have been used to produce capsules. [Pg.320]

Figure 5 illustrates the type of encapsulation process shown in Figure 4a when the core material is a water-immiscible Hquid. Reactant X, a multihmctional acid chloride, isocyanate, or combination of these reactants, is dissolved in the core material. The resulting mixture is emulsified in an aqueous phase that contains an emulsifier such as partially hydroly2ed poly(vinyl alcohol) or a lignosulfonate. Reactant Y, a multihmctional amine or combination of amines such as ethylenediamine, hexamethylenediamine, or triethylenetetramine, is added to the aqueous phase thereby initiating interfacial polymerisation and formation of a capsule shell. If reactant X is an acid chloride, base is added to the aqueous phase in order to act as an acid scavenger. [Pg.320]

Whereas addition of hydrogen to feedwater helps solve the O2 or ECP problem, other complications develop. An increase in shutdown radiation levels and up to a fivefold increase in operating steam plant radiation levels result from the increased volatiUty of the short-Hved radioactive product nitrogen-16, N, (7.1 s half-life) formed from the coolant passing through the core. Without H2 addition, the in the fluid leaving the reactor core is in the form of nitric acid, HNO with H2 addition, the forms ammonia, NH, which is more volatile than HNO, and thus is carried over with the steam going to the turbine. [Pg.195]

Chemical shim control is effected by adjusting the concentration of boric acid dissolved ia the coolant water to compensate for slowly changing reactivity caused by slow temperature changes and fuel depletion. Eixed burnable poison rods are placed ia the core to compensate for fuel depletion. [Pg.240]

Erodings of Slow-Releasing Core Tablets. The sustained-dose portion of a dmg is granulated with hydrophobic materials such as waxes, fatty acids, or fatty alcohols and compressed into a core. The initial dose is added to the core by a modified sugar coating process or by compression coating. Thus, a tablet within a tablet is created. The core erodes slowly to release the active ingredient. [Pg.231]


See other pages where Core, acid is mentioned: [Pg.468]    [Pg.497]    [Pg.245]    [Pg.473]    [Pg.533]    [Pg.300]    [Pg.1301]    [Pg.1302]    [Pg.228]    [Pg.320]    [Pg.321]    [Pg.468]    [Pg.497]    [Pg.245]    [Pg.473]    [Pg.533]    [Pg.300]    [Pg.1301]    [Pg.1302]    [Pg.228]    [Pg.320]    [Pg.321]    [Pg.2418]    [Pg.2594]    [Pg.2658]    [Pg.535]    [Pg.556]    [Pg.558]    [Pg.562]    [Pg.351]    [Pg.80]    [Pg.80]    [Pg.205]    [Pg.282]    [Pg.283]    [Pg.348]    [Pg.11]    [Pg.373]    [Pg.434]    [Pg.331]    [Pg.163]    [Pg.244]    [Pg.451]    [Pg.238]    [Pg.258]    [Pg.149]    [Pg.247]    [Pg.535]    [Pg.536]    [Pg.196]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Acids acid core

© 2024 chempedia.info