Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper-zinc cell, galvanics

If the zinc and copper half-cells are combined, the copper half-cell will be the cathode because it has the more positive half-cell reduction potential. The galvanic cell voltage under standard-state conditions (Fig. 17.4) will be... [Pg.714]

The displacement reaction of copper with iron is used to recover copper ions in waste water. Displacement reactions may also cause corrosion. A well-known example concerns heating systems copper ions liberated by corrosion of a hot-water heater made of copper react downstream with the wall of a zinc-coated steel pipe. The microscopic deposits of metallic copper form a galvanic cell with the wall and thus accelerate locally the rate of corrosion. [Pg.33]

Galvanic corrosion is the enhanced corrosion of one metal by contact with a more noble metal. The two metals require only being in electrical contact with each other and exposing to the same electrolyte environment. By virtue of the potential difference that exists between the two metals, a current flows between them, as in the case of copper and zinc in a Daniell cell. This current dissolves the more reactive metal (zinc in this case), simultaneously reducing the corrosion rate of the less reactive metal. This principle is exploited in the cathodic protection (Section 53.7.2) of steel structures by the sacrificial loss of aluminum or zinc anodes. [Pg.893]

An interesting application of electrode potentials is to the calculation of the e.m.f. of a voltaic cell. One of the simplest of galvanic cells is the Daniell cell. It consists of a rod of zinc dipping into zinc sulphate solution and a strip of copper in copper sulphate solution the two solutions are generally separated by placing one inside a porous pot and the other in the surrounding vessel. The cell may be represented as ... [Pg.64]

From the chemical viewpoint, the galvanic cell is a current source in which a local separation of oxidation and reduction process exists. This is explained below by the example of the Daniell element (Fig. 3). Here the galvanic cell contains copper as the positive electrode, zinc as the nega-... [Pg.5]

When two electrodes contain different amounts of excess charge, there is a difference in electrical potential between them. Because it has more excess electrons, the zinc electrode is at a higher electrical potential than the copper electrode. In a galvanic cell, the difference in electrical potential causes electrons to flow from a region where the concentration of electrons is higher to a region where the concentration of electrons is lower. In this case, eiectrons flow from the zinc electrode toward the copper electrode, as shown at the molecular level in Figure 19-12. [Pg.1380]

The zinc-copper galvanic cell is under standard conditions when the concentration of each ion is 1.00 M, as shown in Figure 19-13. The cell potential under these conditions can be determined by connecting the electrodes to a voltmeter. The measured potential is 1.10 V, with the Zn electrode at the higher (more negative) potential, so Zn gives up electrons and E eii = 1.10 V ... [Pg.1382]

It is found that the dissolution of zinc sulfides occurs more rapidly when they are in contact with copper sulfide or iron sulfide than when the sulfides of these types are absent. This enhancement is brought about by the formation of a galvanic cell. When two sulfide minerals are in contact, the condition for dissolution in acidic medium of one of the sulfides is that it should be anodic to the other sulfide in contact. This is illustrated schematically in Figure 5.3 (A). Thus, pyrite behaves cathodically towards several other sulfide minerals such as zinc sulfide, lead sulfide and copper sulfide. Consequently, pyrite enhances the dissolution of the other sulfide minerals while these minerals themselves understandably retard the dissolution of pyrite. This explains generally the different leaching behavior of an ore from different locations. The ore may have different mineralogical composition. A particle of sphalerite (ZnS) in contact with a pyrite particle in an aerated acid solution is the right system combination for the sphalerite to dissolve anodically. The situation is presented below ... [Pg.476]

It is instructive at the present stage to study the comparison of zinc and copper electrodes against the hydrogen electrode in order to delineate the very basic and centrally important ingredients on which the essence of electrochemistry is based. For this purpose, a galvanic cell is assembled to study the reaction as shown below ... [Pg.636]

The dissolution of zinc in a mineral acid is much faster when the zinc contains an admixture of copper. This is because the surface of the metal contains copper crystallites at which hydrogen evolution occurs with a much lower overpotential than at zinc (see Fig. 5.54C). The mixed potential is shifted to a more positive value, E mix, and the corrosion current increases. In this case the cathodic and anodic processes occur on separate surfaces. This phenomenon is termed corrosion of a chemically heterogeneous surface. In the solution an electric current flows between the cathodic and anodic domains which represent short-circuited electrodes of a galvanic cell. A. de la Rive assumed this to be the only kind of corrosion, calling these systems local cells. [Pg.394]

Danlell cell a galvanic cell composed of copper/copperGI) ion and zinc/zinc ion half-cells. [Pg.352]

Galvanic (voltaic) cells produce electricity by using a redox reaction. Let s take that zinc/copper redox reaction that we studied before (the direct electron transfer one) and make it a galvanic cell by separating the oxidation and reduction half-reactions. [Pg.268]

This reaction occurs on the surface of the zinc strip, where electrons are transferred from zinc atoms to copper(II) ions when these atoms and ions are in direct contact. A common technological invention called a galvanic cell uses redox reactions, such as the one described above, to release energy in the form of electricity. [Pg.505]

Figure 11.1 shows one example of a galvanic cell, called the Daniell cell. One half of the cell consists of a piece of zinc placed in a zinc sulfate solution. The other half of the cell consists of a piece of copper placed in a copper(II) sulfate solution. A porous barrier, sometimes called a semi-permeable membrane, separates these two half-cells. It stops the copper(II) ions from coming into direct contact with the zinc electrode. [Pg.505]

The zinc anode and copper cathode of a Daniell cell are both metals, and can act as electrical conductors. However, some redox reactions involve substances that cannot act as electrodes, such as gases or dissolved electrolytes. Galvanic cells that involve such redox reactions use inert electrodes. An inert electrode is an electrode made from a material that is neither a reactant nor a product of the cell reaction. Figure 11.6 shows a cell that contains one inert electrode. The chemical equation, net ionic equation, and half-reactions for this cell are given below. [Pg.508]

In the galvanic cell, the zinc anode gradually dissolves. The copper cathode grows as more copper is deposited onto it. In the electrolytic cell, the copper anode gradually dissolves. The zinc cathode grows as more zinc is deposited onto it. The process in which a metal is deposited, or plated, onto the cathode in an electrolytic cell is known as electroplating. Electroplating is very important in industry, as you will learn later in this chapter. [Pg.528]

The galvanic cell pictured in Figure 7.1 is not at equilibrium. If switch S is closed, electrons will spontaneously flow from the zinc (anode) to the copper (cathode) electrode. This flow will continue imtil the reactants and products attain their equilibrium concentrations. If switch S is opened before the cell reaches equilibrium, the electron flow will be interrupted. The voltmeter would register a positive voltage, which is a measure of the degree to which the redox reaction drives electrons from the anode to the cathode. Since this voltage is a type of energy that has the potential to do work, it is referred to as a redox potential or cell potential, denoted as... [Pg.174]

Electrochemical Reactions. Consider a simple galvanic cell, composed of two metal electrodes, zinc and copper, immersed in two different aqueous solutions of unit activity—in this case, 1.0 M ZnS04 and 1.0 M CUSO4, respectively, connected by an electrical circuit, and separated by a semipermeable membrane (see Figure 3.8). The membrane allows passage of ions, but not bulk flow of the aqueous solutions from one side of the cell to the other. Electrons are liberated at the anode by the oxidation (increase in the oxidation number) of the zinc electrode ... [Pg.226]

Figure 16.1 The basis of the galvanic (bimetallic) corrosion cell. Zinc, which is more readily oxidized than copper, becomes the anode. Figure 16.1 The basis of the galvanic (bimetallic) corrosion cell. Zinc, which is more readily oxidized than copper, becomes the anode.
Daniell cell A galvanic cell in which the cathode consists of copper in copper(II) sulfate solution and the anode consists of zinc in zinc sulfate solution. [Pg.1029]


See other pages where Copper-zinc cell, galvanics is mentioned: [Pg.232]    [Pg.201]    [Pg.981]    [Pg.289]    [Pg.222]    [Pg.229]    [Pg.375]    [Pg.684]    [Pg.281]    [Pg.231]    [Pg.355]    [Pg.289]    [Pg.365]    [Pg.906]    [Pg.11]    [Pg.611]    [Pg.611]    [Pg.632]    [Pg.652]    [Pg.230]    [Pg.173]    [Pg.227]    [Pg.386]    [Pg.705]    [Pg.765]    [Pg.766]    [Pg.770]   
See also in sourсe #XX -- [ Pg.627 ]




SEARCH



Cell galvanics

Copper cell

Copper-zinc

Copper-zinc galvanic cells

Zinc galvanics

Zinc, galvanizing

© 2024 chempedia.info