Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper with lanthanum

The anionic copper complexes of N1,N4-Ai5(salicylidene)isosemicarbazidate ion (L) are used in the reactions above. As a result of their interaction with lanthanum and samarium chlorides in chloroform-methanol suspension, the heteronuclear Lu,La-or Cu,Sm-complexes are formed [449]. [Pg.237]

Copper can be separated conveniently by precipitation as the sulphide CuS from either an acidic or a neutral medium. Metals yielding sparingly soluble sulphides e.g., Hg, Cd, Pd, and Zn) can be used as collectors. Traces of copper can be isolated quantitatively as the sulphide or hydroxide with lanthanum or iron as collectors [3,4]. [Pg.177]

Cerium-, copper-cerium coexchanged ZSM-5, copper-MCM-22, copper- and cerium-EMT type zeolite, copper-FAU type zeolite and copper-Beta exhibit an activity of the same order as that of copper-ZSM-5 in NOx reduction under simulated Diesel exhaust conditions. Propene was used as the reducing agent. The catalysts were used in a powder form and their activities tested in a fixed-bed flow reactor at a space velocity of 50 000 H . Copper-SAPO-34 and cerium- and gallium-EMT type zeolite have a moderate activity under the same conditions. The presence of water vapor inhibits the activity of EMT-zeolites. When an ageing procedure is carried out on copper-EMT type zeolite, dealumination occurs. The increase of the Si/Al ratio of the zeolite does not limit the dealumination process. The exchange of the zeolite with lanthanum prevents the zeolite from dealumination but leads to a loss of the catalytic activity. [Pg.297]

Catalysts used for preparing amines from alcohols iaclude cobalt promoted with tirconium, lanthanum, cerium, or uranium (52) the metals and oxides of nickel, cobalt, and/or copper (53,54,56,60,61) metal oxides of antimony, tin, and manganese on alumina support (55) copper, nickel, and a metal belonging to the platinum group 8—10 (57) copper formate (58) nickel promoted with chromium and/or iron on alumina support (53,59) and cobalt, copper, and either iron, 2iac, or zirconium (62). [Pg.221]

The relatively high cost and lack of domestic supply of noble metals has spurred considerable efforts toward the development of nonnoble metal catalysts for automobile exhaust control. A very large number of base metal oxides and mixtures of oxides have been considered, especially the transition metals, such as copper, chromium, nickel, manganese, cobalt vanadium, and iron. Particularly prominent are the copper chromites, which are mixtures of the oxides of copper and chromium, with various promoters added. These materials are active in the oxidation of CO and hydrocarbons, as well as in the reduction of NO in the presence of CO (55-59). Rare earth oxides, such as lanthanum cobaltate and lanthanum lead manganite with Perovskite structure, have been investigated for CO oxidation, but have not been tested and shown to be sufficiently active under realistic and demanding conditions (60-63). Hopcalities are out-... [Pg.79]

Iseler, G. W. et al., Int. Conf. Indium Phosphide Relat. Mater., 1992, 266 Reaction of beryllium, copper, manganese, thorium or zirconium is incandescent when heated with phosphorus [1] and that of cerium, lanthanum, neodymium and praseodymium is violent above 400°C [2], Osmium incandesces in phosphorus vapour, and platinum bums vividly below red-heat [3], Red phosphorus shows very variable vapour pressure between batches (not surprising, it is an indeterminate material). This leads to explosions when preparing indium phosphide by reactions involving fusion with phosphorus in a sealed tube [4],... [Pg.1887]

In studies of the concentrations of arsenic, bromine, chromium, copper, mercury, lead and zinc in south-eastern Lake Michigan, it was shown that these elements concentrated near the sediment water interface of the fine-grained sediments. The concentration of these elements was related to the amount of organic carbon present in the sediments (161). However, it was not possible to correlate the concentration of boron, berylium, copper, lanthanum, nickel, scandium and vanadium with organic carbon levels. The difficulty in predicting the behaviour of cations in freshwater is exemplified in this study for there is no apparent reason immediately obvious why chromium and copper on the one hand and cobalt and nickel on the other exhibit such variations. However, it must be presumed that lanthanium might typify the behaviour of the trivalent actinides and tetravalent plutonium. [Pg.70]

In this special field, earlier work had been done in other laboratories, such as by the Schering Company, Berlin (36), and by Ipatieff (37) in connection with his work on the hydrogenation of camphor and of other organic compounds. At both places, the favorable effect of alkali oxides and earth alkali oxides on nickel, cobalt and copper has been investigated. Similarly, Paal and his coworkers (38) have used a palladium-aluminum hydroxide catalyst in 1913 for the hydrogenation of double bonds. Bedford and Erdman (39) had reported that the catalytic action of nickel oxide is enhanced by the oxides of aluminum, zirconium, titanium, calcium, lanthanum, and magnesium. [Pg.97]

The extremely low solubility of lead phosphate in water (about 6 x 10 15m) again suggests potentiometric analysis. Selig57,59 determined micro amounts of phosphate by precipitation with lead perchlorate in aqueous medium. The sample was buffered at pH 8.25-8.75 and a lead-selective electrode was used to establish the end-point. The detection limit is about 10 pg of phosphorus. Anions which form insoluble lead salts, such as molybdate, tungstate or chromate, interfere with the procedure. Similar direct potentiometric titrations of phosphate by precipitation as insoluble salts of lanthanum(III), copper(II) or cadmium(II) are suggested, the corresponding ion-selective electrodes being used to detect the end-point. [Pg.351]

Jhe distribution of beryllium, boron, titanium, vanadium, chromium, cobalt, nickel, copper, zinc, gallium, germanium, tin, molybdenum, yttrium, and lanthanum in the principal coal-producing beds of the Interior Province has been studied by the U. S. Geological Survey. Data, methods of sampling, and analyses are discussed by Zubovic and others (II, 12). This chapter discusses the occurrence of 13 of these elements with respect to geological and geochemical environments of coal deposition and chemical properties of the elements. Zinc and tin are not included in this study because they were detected in only a few samples. [Pg.233]

Research chemists found that they could modify the conducting properties of solids by doping them, a process commonly used to control the properties of semiconductors (see Section 3.13). In 1986, a record-high Ts of 35 K was observed, surprisingly not for a metal, but for a ceramic material (Section 14.24), a lanthanum-copper oxide doped with barium. Then early in 1987, a new record T, of 93 K was set with yttrium-barium-copper and a series of related oxides. In 1988, two more oxide series of bismuth-strontium-calcium-copper and thallium-barium-calcium-copper exhibited transition temperatures of 110 and 125 K, respectively. These temperatures can be reached by cooling the materials with liquid nitrogen, which costs only about 0.20 per liter. Suddenly, superconducting devices became economically viable. [Pg.372]

Many metal chlorides when heated with an excess of nitric acid are converted into the nitrates. Thus, J. L. Smith found that the transformation occurs with potassium or sodium chloride in the presence of 7 to 8 parts of nitric acid J. S. Stas said that at 40°-50°, potassium, sodium, or lithium chloride require respectively 3, 4, and 5-5 parts of nitric acid. J. L. Smith said that ammonium chloride and nitric acid yield nitrous oxide. H. Wurtz found that auric, cadmium, cerium, lanthanum, didymium, ferric, and platinic chlorides are decomposed by nitric acid incompletely and with difficulty. S. Schlesinger said that the two copper chlorides, mercurous, zinc, and lead chlorides, are decomposed, but, added H. Wurtz, with difficulty and incompletely while mercuric ajid silver chlorides are not attacked. F. Rose found cobalt amminochlorides are readily converted into the nitrate. [Pg.595]

Iseler, G. W. et al., Int. Conf. Indium Phosphide Relat. Mater., 1992, 266 Reaction of beryllium, copper, manganese, thorium or zirconium is incandescent when heated with phosphoms [1] and that of cerium, lanthanum, neodymium and... [Pg.1974]


See other pages where Copper with lanthanum is mentioned: [Pg.256]    [Pg.414]    [Pg.89]    [Pg.733]    [Pg.734]    [Pg.1294]    [Pg.201]    [Pg.201]    [Pg.205]    [Pg.404]    [Pg.32]    [Pg.101]    [Pg.63]    [Pg.635]    [Pg.289]    [Pg.448]    [Pg.314]    [Pg.15]    [Pg.142]    [Pg.295]    [Pg.26]    [Pg.319]    [Pg.195]    [Pg.200]    [Pg.561]    [Pg.208]    [Pg.137]    [Pg.11]    [Pg.266]    [Pg.222]    [Pg.225]    [Pg.332]    [Pg.701]    [Pg.1457]    [Pg.824]    [Pg.82]    [Pg.160]    [Pg.10]   
See also in sourсe #XX -- [ Pg.289 , Pg.289 ]




SEARCH



With Copper

© 2024 chempedia.info