Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper catalysts oxidative coupling

The basic study was performed on copper complexes with N,N,N, N1-tetramethylethane-1,2-diamine (TMED), which were known to be very effective oxidative coupling catalysts (7,12). From our first kinetic studies it appeared that binuclear copper complexes are the active species as in some copper-containing enzymes. By applying the very strongly chelating TMED we were able to isolate crystals of the catalyst and to determine its structure by X-ray diffraction (13). Figure 1 shows this structure for the TMED complex of basic copper chloride Cu(0H)Cl prepared from CuCl by oxidation in moist pyridine. [Pg.10]

Poly(phenylene ether). The only commercially available thermoplastic poly(phenylene oxide) PPO is the polyether poly(2,6-dimethylphenol-l,4-phenylene ether) [24938-67-8]. PPO is prepared by the oxidative coupling of 2,6-dimethylphenol with a copper amine catalyst (25). Usually PPO is blended with other polymers such as polystyrene (see PoLYETPiERS, Aromatic). However, thermoplastic composites containing randomly oriented glass fibers are available. [Pg.38]

Copper oxide, oxidation of CO over, 86 Coupled heterogeneous catalytic reactions, kinetics of, 1-49, see also Kinetics coupling through catalytic surface, 9-13 experimental studies, 22-49 apparatus and procedure, 25, 26 catalysts, 26-28... [Pg.416]

We were interested in the behaviour of polymeric catalysts in order to confirm that typical polymer effects may occur. Oxidative coupling of 2,6-disubstituted phenols, as developped by Hay (7), was chosen as a model reaction and the catalytic activities of coordination complexes of copper with several polymeric tertiary amines were compared with the activities of their low molecular weight analogs. The overall reaction scheme is presented in scheme 1. [Pg.8]

So, both effects maintain an enlarged local concentration of active catalytic centers and cause the rate of oxidative coupling with polymeric catalysts to be higher than with equivalent amounts of low molecular weight analogs, especially for low 1igand/copper ratios. This rate enhancement is clearly demonstrated in Figure 5 for polydentates (I) vs. DMBA (J 7), and was also found for polydentate (II) vs. pyridine (18). [Pg.15]

Formally copper catalyzed couplings are analogous to palladium and nickel catalyzed reactions. Carbon-carbon and carbon-heteroatom bonds can be formed in such transformations alike. From the mechanistic point of view there is a significant difference between nickel, palladium and copper catalyzed processes however. While in the former cases the catalyst usually oscillates between the 0 and +2 oxidation states, in copper mediated transformations the common oxidation numbers are +1, +2 and +3. [Pg.26]

Allan S. Hay In the oxidative coupling of phenols with copper-amine catalysts and oxygen the evidence is quite compelling that the active catalyst has the structure... [Pg.194]

Propylene oxide is one of the raw materials used to manufacture rubbery and crystalline polyepoxides. R. J. Herold and R. A. Livigni describe propylene oxide polymerization with hexacyanometalate salt complexes as catalyst. Polyphenylene oxide is made by copper catalyzed oxidative coupling of 2,6-dimethylphenol. G. D. Cooper, J. G. Bennett, and A. Factor discuss the preparation of copolymers of PPO by oxidative coupling of dimethylphenol with methylphenylphenol and with diphenylphenol. [Pg.11]

Block copolymers may also be made by condensation polymerization. Elastomer fibers are produced in a three-step operation. A primary block of a polyether or polyester of a molecular weight of 1000-3000 is prepared, capped with an aromatic diisocyanate, and then expanded with a diamine or dihydroxy compound to a multiblock copolymer of a molecular weight of 20,000. The oxidative coupling of 2,6-disubstituted phenols to PPO is also a condensation polymerization. G. D. Cooper and coworkers report the manufacture of a block copolymer of 2,6-dimethyl-phenol with 2,6-diphenylphenol. In the first step, a homopolymer of diphenylphenol is preformed by copper-amine catalyst oxidation. In the second step, oxidation of dimethylphenol in the presence of the first polymer yields the block copolymer. [Pg.12]

BINOL and its derivatives have been utilized as versatile chiral sources for asymmetric catalysis, and efficient catalysts for their syntheses are, ultimately, required in many chemical fields [39-42]. The oxidative coupling of 2-naphthols is a direct synthesis of BINOL derivatives [43, 44], and some transition metals such as copper [45, 46], iron [46, 47] and manganese [48] are known as active metals for the reaction. However, few studies on homogeneous metal complexes have been reported for the asymmetric coupling of 2-naphthols [49-56]. The chiral self-dimerized V dimers on Si02 is the first heterogeneous catalyst for the asymmetric oxidative coupling of 2-naphthol. [Pg.45]

Oxidative coupling of a terminal alkyne is a particularly easily performed carbon-carbon bond forming reaction, which results in a good yield of the symmetrical diacetylene. A widely used procedure involves the oxidation of the alkyne with air or oxygen in aqueous ammonium chloride in the presence of a copper(i) chloride catalyst (Glaser oxidative coupling). [Pg.515]

Oxidative coupling of terminal acetylenes in the presence of copper(I) catalysts is the best method of preparing symmetrically substituted butadiyne derivatives,5 and has been applied to the coupling of trimethylsilyl-acetylene. Better yields are obtained using the Hay procedure in which the catalyst is the TMEDA complex of copper(I) chloride.7 The procedure submitted here is an improved version of Walton and Waugh s synthesis of BTMSBD by the Hay coupling of trimethylsilylacetylene.2 BTMSBD has also been prepared by... [Pg.29]

Kinetically slow steps in the formation of melanin from DOPA are the formation of dopaquinone from DOPA (step 1, kD), the reaction of dopachrome to dihydroxyindole (step 2), and the polymerization to form melanin (step 3, kM). Step 1 and step 2 proceed with about the same rate in the oxidative coupling polymerization catalyzed by tyrosinase. However, step 1 becomes remarkably slow when a macromolecule-metal complex is used as a catalyst. The copper complex in poly(l-vinylimidazole-co-vinylpyrrolidone) has been found [38] to act as an excellent catalyst and to exhibit the highest activity for melanin formation. The ratio of the rate constants ( m/ d) is approximately 3 (tyrosinase... [Pg.539]

This reaction allows aryl carbon-heteroatom bond formation via an oxidative coupling of arylboronic acids, stannanes or siloxanes with N-H or O-H containing compounds in air. Substrates include phenols, amines, anilines, amides, imides, ureas, carbamates, and sulfonamides. The reaction is induced by a stoichiometric amount of copper(II) or a catalytic amount of copper catalyst which is reoxidized by atmospheric oxygen. [Pg.73]

Asymmetric oxidative coupling polymerization of hydroxynaphthalene derivatives was investigated by Habaue and Okamoto et al. First, they studied the oxidative coupling polymerization of optically active 3,3/-hydroxy-2,2/-dimethoxy-1,1 -binaphthalene with copper catalysts bearing chiral ligands under an oxygen atmosphere (Scheme 41) [166]. The obtained polymers had molecular weights of 3100-5200. When the polymerization of (J )-monomer... [Pg.29]

In a recent review it was argued that such additives of copper, benzoquinone, and HPMOV are not really needed all that is needed is the presence of oxidation-resistant ligands that prevent palladium metal formation [15]. Indeed, activation of the C-H bond is not as slow as, for example, the Wacker reaction of ethene in which reoxidation of palladium must be performed by copper oxidation, although in this catalytic system the additives may still play a role in stabilizing the intermediate low-valent palladium species and thus prevent catalyst decomposition. This thesis was corroborated by the work of de Vos and Jacobs, who showed that addition of benzoic acid to the oxidative arylation reaction in the presence of oxygen led to superior results in the coupling of a variety of substituted arenes with acrylates, cinnamates, and ,/f-unsaturated ketones. Very good yields and TON up to 762 were obtained at 90 °C. A mixture of the o, m, and p isomers is obtained if substituted arenes are used [16]. [Pg.209]


See other pages where Copper catalysts oxidative coupling is mentioned: [Pg.114]    [Pg.179]    [Pg.328]    [Pg.80]    [Pg.86]    [Pg.186]    [Pg.605]    [Pg.344]    [Pg.66]    [Pg.97]    [Pg.176]    [Pg.50]    [Pg.147]    [Pg.66]    [Pg.20]    [Pg.328]    [Pg.1186]    [Pg.389]    [Pg.429]    [Pg.27]    [Pg.536]    [Pg.542]    [Pg.19]    [Pg.552]    [Pg.35]    [Pg.52]   
See also in sourсe #XX -- [ Pg.3 , Pg.559 ]

See also in sourсe #XX -- [ Pg.559 ]

See also in sourсe #XX -- [ Pg.3 , Pg.559 ]




SEARCH



Catalysts copper oxide

Copper catalyst

Copper catalysts oxidative biaryl coupling

Copper couples

Copper oxidative coupling

Copper oxidized

Oxidants copper

Oxidative coppering

Oxidative coupling copper-polymer complex catalysts

Oxidic copper

© 2024 chempedia.info