Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper formation reactions

Trioctylamine has been prepared, in a continuous process, using 5,200 kg of -octanol, 100 kg of copper formate catalyst, 500 kg of -octylamine, 10 kg of calcium hydroxide, and 240 kg of ammonia (58). Ammonia was added over a 10-h period while 10 m of hydrogen/h was passed through the reactor at a reaction temperature of 180—200°C. The final product was composed of 94% trioctylamine, 2% dioctylamine, 1% octylamine, and 0.5% -octanol. A... [Pg.220]

Only recently has a mechanism been proposed for the copper-cataly2ed reaction that is completely satisfactory (58). It had been known for many years that a small amount of carbon dioxide in the feed to the reactor is necessary for optimum yield, but most workers in the field beHeved that the main reaction in the formation of methanol was the hydrogenation of carbon monoxide. Now, convincing evidence has been assembled to indicate that methanol is actually formed with >99% selectivity by the reaction of dissociated, adsorbed hydrogen and carbon dioxide on the metallic copper surface in two steps ... [Pg.199]

Copper-catalyzed or mediated carbon-carbon bond formation reactions of zirconacycles and alkenylzirconocenes 97YGK958. [Pg.275]

A further factor which must also be taken into consideration from the point of view of the analytical applications of complexes and of complex-formation reactions is the rate of reaction to be analytically useful it is usually required that the reaction be rapid. An important classification of complexes is based upon the rate at which they undergo substitution reactions, and leads to the two groups of labile and inert complexes. The term labile complex is applied to those cases where nucleophilic substitution is complete within the time required for mixing the reagents. Thus, for example, when excess of aqueous ammonia is added to an aqueous solution of copper(II) sulphate, the change in colour from pale to deep blue is instantaneous the rapid replacement of water molecules by ammonia indicates that the Cu(II) ion forms kinetically labile complexes. The term inert is applied to those complexes which undergo slow substitution reactions, i.e. reactions with half-times of the order of hours or even days at room temperature. Thus the Cr(III) ion forms kinetically inert complexes, so that the replacement of water molecules coordinated to Cr(III) by other ligands is a very slow process at room temperature. [Pg.55]

Copper complexes of sparteine have also been used for the catalysis of asymmetric carbon-carbon bond formation. The copper-catalyzed reaction... [Pg.78]

Reduction of aryl diazonium ions by Ti(III) in the presence of a,(3-unsaturated ketones and aldehydes leads to (3-arylation and formation of the saturated ketone or aldehyde. The early steps in this reaction parallel the copper-catalyzed reaction. However, rather than being oxidized, the radical formed by the addition step is reduced by Ti(III).116... [Pg.1035]

Direct aromatic substitution of unactivated aryl halides is slow and generally requires a catalyst to become a useful synthetic method. Copper reagents have been used in some cases in classical procedures for the formation of products from aromatic substitution. In many cases these copper-mediated reactions occur at high temperatures and are substrate dependent. Since the 1970s, transition metal catalysts have been developed for aromatic substitution. Most of the early effort toward developing metal-catalyzed aromatic substitution focused on the formation of... [Pg.369]

Recently, interest in copper-catalyzed carbon-heteroatom bond-forming reactions has shifted to the use of boronic acids as reactive coupling partners [133], One example of carbon-sulfur bond formation is displayed in Scheme 6.65. Lengar and Kappe have reported that, in contrast to the palladium(0)/copper(l)-mediated process described in Scheme 6.55, which leads to carbon-carbon bond formation, reaction of the same starting materials in the presence of 1 equivalent of copper(II) acetate and 2 equivalents of phenanthroline ligand furnishes the corresponding carbon-sulfur cross-coupled product [113]. Whereas the reaction at room temperature needed 4 days to reach completion, microwave irradiation at 85 °C for 45 min in 1,2-dichloroethane provided a 72% isolated yield of the product. [Pg.152]

Most of the work on the C-N bond-forming crosscoupling reactions has concentrated on the formation of aromatic C-N bonds. Recent studies show that the application of cross-coupling reactions to alkenyl halides or triflates furnished enamines (Scheme 19) (for palladium-catalyzed reaction, see 28,28a-28d, and for copper-catalyzed reaction, see 28e-28g). Brookhart et al. studied the palladium-catalyzed amination of 2-triflatotropone 109 for the synthesis of 2-anilinotropone 110.28 It was found that the reaction of 109 proceeded effectively in the presence of racemic BINAP and a base. As a simple method for the synthesis of enamines, the palladium-catalyzed reactions of alkenyl bromide 111 with secondary amine were achieved under similar conditions.2841 The water-sensitive enamine 112 was isolated as pure compound after dilution with hexane and filtration through Celite. The intramolecular cyclization of /3-lactam 113, having a vinyl bromide moiety, was investigated by Mori s... [Pg.707]

Sultam 53 has proved to be an excellent chiral auxiliary in various asymmetric C-C bond formation reactions. One more example of using sultam 53 is the asymmetric induction of copper(I) chloride-catalyzed 1,4-addition of alkyl magnesium chlorides to a,/ -disubstituted (/ )-enesultams 60. Subsequent protonation of the reaction product gives compound 61c as the major product (Scheme 2-30 and Table 2-11).56... [Pg.96]

An alternative to the synthesis of epoxides is the reaction of sulfur ylide with aldehydes and ketones.107 This is a carbon-carbon bond formation reaction and may offer a method complementary to the oxidative processes described thus far. The formation of sulfur ylide involves a chiral sulfide and a carbene or carbenoid, and the general reaction procedure for epoxidation of aldehydes may involve the application of a sulfide, an aldehyde, or a carbene precursor as well as a copper salt. This reaction may also be considered as a thiol acetal-mediated carbene addition to carbonyl groups in the aldehyde. [Pg.249]

Furthermore, an observed change in the coordination of the carboxylate ligands from benzene tri-carboxylic [57] likely involves a second N02 molecule and leads to the formation of a monodentate nitrate bound to the copper (see reaction (10.2)). This rearrangement may cause the appearance of carboxylic groups on the benzene tricarboxylic linkage and the formation of NO, which is released in each case during N02 adsorption process in dry conditions (see reaction (10.3)). [Pg.286]

In the 1952 paper mentioned above [3], Gilman reported on the formation of lithium dimethylcuprate from polymeric methylcopper and methyllithium. These so-called Gilman cuprates were later used for substitution reactions on both saturated [6] and unsaturated [7, 8, 9] substrates. The first example of a cuprate substitution on an allylic acetate (allylic ester) was reported in 1969 [8], while Schlosser reported the corresponding copper-catalyzed reaction between an allylic acetate and a Grignard reagent (Eq. 2) a few years later [10]. [Pg.259]

Copper-catalyzed reaction of guanidine with l,4-dichloro-9,10-anthracenedione 928 in DMF not only resulted in formation of the targeted 777-benzo[i ]perimidin-7-one ring system, but also resulted in substitution of the second chlorine atom by a dimethylamino group from the DMF solvent to give 929 <2002BMC1025>. [Pg.223]

Eichhom and his co-workers have thoroughly studied the kinetics of the formation and hydrolysis of polydentate Schiff bases in the presence of various cations (9, 10, 25). The reactions are complicated by a factor not found in the absence of metal ions, i.e, the formation of metal chelate complexes stabilizes the Schiff bases thermodynamically but this factor is determined by, and varies with, the central metal ion involved. In the case of bis(2-thiophenyl)-ethylenediamine, both copper (II) and nickel(II) catalyze the hydrolytic decomposition via complex formation. The nickel (I I) is the more effective catalyst from the viewpoint of the actual rate constants. However, it requires an activation energy cf 12.5 kcal., while the corresponding reaction in the copper(II) case requires only 11.3 kcal. The values for the entropies of activation were found to be —30.0 e.u. for the nickel(II) system and — 34.7 e.u. for the copper(II) system. Studies of the rate of formation of the Schiff bases and their metal complexes (25) showed that prior coordination of one of the reactants slowed down the rate of formation of the Schiff base when the other reactant was added. Although copper (more than nickel) favored the production of the Schiff bases from the viewpoint of the thermodynamics of the overall reaction, the formation reactions were slower with copper than with nickel. The rate of hydrolysis of Schiff bases with or/Zw-aminophenols is so fast that the corresponding metal complexes cannot be isolated from solutions containing water (4). [Pg.162]

The opening step of the Buchwald-Hartwig reaction, similarly to the previous cases, is the oxidative addition of an aryl halide or sulfonate onto a low oxidation state metal. Although the term Buchwald-Hartwig reaction is usually reserved for palladium catalyzed processes, carbon-heteroatom bond formation also proceeds readily with nickel and copper. The nickel catalyzed processes follow a similar mechanism, while the distinctly different copper catalyzed reactions will be discussed in Chapter 2.5. [Pg.23]

Let us apply this result to two cases of metal oxidation. 1) If we oxidize Cu metal, then semiconducting Cu20 will form at sufficiently low oxygen potentials. The point defect formation reaction including the copper ion vacancies responsible for the copper transport in semiconducting Cu20 reads... [Pg.169]

The reaction is assumed to involve initial formation of a carbene, by decomposition of the diazo compound with loss of nitrogen, followed by reaction of the electron-deficient carbene with the lone pair of electrons of the arsenic atom. Thermolysis of diazo compounds in copper-catalyzed reactions is known to provide singlet carbenes or carbenoid species (17). [Pg.120]


See other pages where Copper formation reactions is mentioned: [Pg.341]    [Pg.177]    [Pg.262]    [Pg.874]    [Pg.213]    [Pg.214]    [Pg.285]    [Pg.327]    [Pg.95]    [Pg.229]    [Pg.71]    [Pg.134]    [Pg.319]    [Pg.690]    [Pg.341]    [Pg.202]    [Pg.145]    [Pg.855]    [Pg.43]    [Pg.24]    [Pg.95]    [Pg.132]    [Pg.24]    [Pg.95]    [Pg.546]    [Pg.188]    [Pg.132]    [Pg.27]    [Pg.179]    [Pg.169]   
See also in sourсe #XX -- [ Pg.112 , Pg.113 ]




SEARCH



Copper formate

© 2024 chempedia.info