Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper conversion

Copper conversion is accomplished by a pyrometallurgical process known as smelting. During smelting the concentrates are dried and fed into one of several different types of furnaces. There the sulfide minerals are partially oxidized and melted to yield a layer of matte, a mixed copper-iron sulfide, and slag, an upper layer of waste. [Pg.82]

Copper conversion Copper matte, scrap copper, siliceous flux Sulfur dioxide, particulate matter containing arsenic, antimony, cadmium, lead, mercury, and zinc Acid plant blowdown slurry/sludge, slag containing iron sulfides, silica... [Pg.85]

Antitarnish. This neutral solution prevents oxidation of active copper surfaces by forming a copper conversion coating. [Pg.687]

The conversion of an aromatic diazonium compound into the corresponding arsonic acid by treatment with sodium arsenite in the presence of a catalyst, such as copper or a copper salt, is called the Bart reaction. A modification of the reaction employs the more stable diazonium fluoborate in place of the diazonium chlorid.i. This is illustrated by the preparation of />-nitrophenylarsonic acid ... [Pg.597]

Thirty minutes after refluxing had stopped, a trace of copper(I) bromide was added to terminate the conversion. The reaction mixture was cautiously poured on to 500 g of finely crushed ice, then 200 ml of 4 N hydrochloric acid were added. After the remaining ice had melted the layers were separated and the aqueous layer was extracted three times with diethyl ether. The combined ethereal solutions were washed with saturated NaCl solution and dried over magnesium sulfate. The greater part of... [Pg.138]

In the flask were placed 40 ml of ethanol, 10 ml of water, 12 g of finely powdered CuCN and 0.40 mol of 3-bromo-l-butyne (compare VIII-2, Exp. 3). The mixture was warmed to 55°C and a solution of 26 g of KCN in 60 ml of water was added drop-wise or in small portions care was taken that complete dissolution of the copper cyanide did not occur (note 2). The temperature of the mixture was maintained close to 60°C throughout the period of addition. The conversion was terminated... [Pg.174]

Because huge quantities of by-product acetonitrile are generated by ammoxidation of propylene, the nitrile may be a low cost raw material for acetamide production. Copper-cataly2ed hydration gives conversions up to 83% (11), and certain bacteria can effect the same reaction at near room temperature (12). [Pg.73]

The equilibrium is more favorable to acetone at higher temperatures. At 325°C 97% conversion is theoretically possible. The kinetics of the reaction has been studied (23). A large number of catalysts have been investigated, including copper, silver, platinum, and palladium metals, as well as sulfides of transition metals of groups 4, 5, and 6 of the periodic table. These catalysts are made with inert supports and are used at 400—600°C (24). Lower temperature reactions (315—482°C) have been successhiUy conducted using 2inc oxide-zirconium oxide combinations (25), and combinations of copper-chromium oxide and of copper and silicon dioxide (26). [Pg.96]

Even ia 1960 a catalytic route was considered the answer to the pollution problem and the by-product sulfate, but nearly ten years elapsed before a process was developed that could be used commercially. Some of the eadier attempts iacluded hydrolysis of acrylonitrile on a sulfonic acid ion-exchange resia (69). Manganese dioxide showed some catalytic activity (70), and copper ions present ia two different valence states were described as catalyticaHy active (71), but copper metal by itself was not active. A variety of catalysts, such as Umshibara or I Jllmann copper and nickel, were used for the hydrolysis of aromatic nitriles, but aUphatic nitriles did not react usiag these catalysts (72). Beginning ia 1971 a series of patents were issued to The Dow Chemical Company (73) describiag the use of copper metal catalysis. Full-scale production was achieved the same year. A solution of acrylonitrile ia water was passed over a fixed bed of copper catalyst at 85°C, which produced a solution of acrylamide ia water with very high conversions and selectivities to acrylamide. [Pg.135]

Although many variations of the cyclohexane oxidation step have been developed or evaluated, technology for conversion of the intermediate ketone—alcohol mixture to adipic acid is fundamentally the same as originally developed by Du Pont in the early 1940s (98,99). This step is accomplished by oxidation with 40—60% nitric acid in the presence of copper and vanadium catalysts. The reaction proceeds at high rate, and is quite exothermic. Yield of adipic acid is 92—96%, the major by-products being the shorter chain dicarboxytic acids, glutaric and succinic acids,and CO2. Nitric acid is reduced to a combination of NO2, NO, N2O, and N2. Since essentially all commercial adipic acid production arises from nitric acid oxidation, the trace impurities patterns ate similar in the products of most manufacturers. [Pg.242]

Dimethyl Ether. Synthesis gas conversion to methanol is limited by equiUbrium. One way to increase conversion of synthesis gas is to remove product methanol from the equiUbrium as it is formed. Air Products and others have developed a process that accomplishes this objective by dehydration of methanol to dimethyl ether [115-10-6]. Testing by Air Products at the pilot faciUty in LaPorte has demonstrated a 40% improvement in conversion. The reaction is similar to the Hquid-phase methanol process except that a soHd acid dehydration catalyst is added to the copper-based methanol catalyst slurried in an inert hydrocarbon Hquid (26). [Pg.165]

Oxalic acid produced from syngas can be esteiified (eq. 20) and reduced with hydrogen to form ethylene glycol with recovery of the esterification alcohol (eq. 21). Hydrogenation requires a copper catalyst giving 100% conversion with selectivities to ethylene glycol of 95% (15). [Pg.359]

Resorcinol or hydroquinone production from m- or -diisopropylben2ene [100-18-5] is realized in two steps, air oxidation and cleavage, as shown above. Air oxidation to obtain the dihydroperoxide (DHP) coproduces the corresponding hydroxyhydroperoxide (HHP) and dicarbinol (DC). This formation of alcohols is inherent to the autooxidation process itself and the amounts increase as DIPB conversion increases. Generally, this oxidation is carried out at 90—100°C in aqueous sodium hydroxide with eventually, in addition, organic bases (pyridine, imidazole, citrate, or oxalate) (8) as well as cobalt or copper salts (9). [Pg.488]

Finally, selective hydrogenation of the olefinic bond in mesityl oxide is conducted over a fixed-bed catalyst in either the Hquid or vapor phase. In the hquid phase the reaction takes place at 150°C and 0.69 MPa, in the vapor phase the reaction can be conducted at atmospheric pressure and temperatures of 150—170°C. The reaction is highly exothermic and yields 8.37 kJ/mol (65). To prevent temperature mnaways and obtain high selectivity, the conversion per pass is limited in the Hquid phase, and in the vapor phase inert gases often are used to dilute the reactants. The catalysts employed in both vapor- and Hquid-phase processes include nickel (66—76), palladium (77—79), copper (80,81), and rhodium hydride complexes (82). Complete conversion of mesityl oxide can be obtained at selectivities of 95—98%. [Pg.491]

The oxidative dehydration of isobutyric acid [79-31-2] to methacrylic acid is most often carried out over iron—phosphoms or molybdenum—phosphoms based catalysts similar to those used in the oxidation of methacrolein to methacrylic acid. Conversions in excess of 95% and selectivity to methacrylic acid of 75—85% have been attained, resulting in single-pass yields of nearly 80%. The use of cesium-, copper-, and vanadium-doped catalysts are reported to be beneficial (96), as is the use of cesium in conjunction with quinoline (97). Generally the iron—phosphoms catalysts require temperatures in the vicinity of 400°C, in contrast to the molybdenum-based catalysts that exhibit comparable reactivity at 300°C (98). [Pg.252]

The oxidation of methacrolein to methacrylic acid is most often performed over a phosphomolybdic acid-based catalyst, usually with copper, vanadium, and a heavy alkaU metal added. Arsenic and antimony are other common dopants. Conversions of methacrolein range from 85—95%, with selectivities to methacrylic acid of 85—95%. Although numerous catalyst improvements have been reported since the 1980s (120—123), the highest claimed yield of methacryhc acid (86%) is still that described in a 1981 patent to Air Products (124). [Pg.253]

Because the synthesis reactions are exothermic with a net decrease in molar volume, equiUbrium conversions of the carbon oxides to methanol by reactions 1 and 2 are favored by high pressure and low temperature, as shown for the indicated reformed natural gas composition in Figure 1. The mechanism of methanol synthesis on the copper—zinc—alumina catalyst was elucidated as recentiy as 1990 (7). For a pure H2—CO mixture, carbon monoxide is adsorbed on the copper surface where it is hydrogenated to methanol. When CO2 is added to the reacting mixture, the copper surface becomes partially covered by adsorbed oxygen by the reaction C02 CO + O (ads). This results in a change in mechanism where CO reacts with the adsorbed oxygen to form CO2, which becomes the primary source of carbon for methanol. [Pg.275]

Pigment Blue 15 [147-14-8] 74160 copper phthalocyanine condensation of phthaUc anhydride with urea, in presence of copper ions, with or without added chlorophthahc anhy-dride subsequent conversion to alpha-phase and stabili2ation, if necessary... [Pg.19]

Mechanistic studies on the formation of PPS from polymerization of copper(I) 4-bromobenzenethiolate in quinoline under inert atmosphere at 200°C have been pubUshed (91). PPS synthesized by this synthetic procedure is characterized by high molar mass at low conversions and esr signals consistent with a single-electron-transfer mechanism, the Sj l-type mechanism described earlier (22). [Pg.445]

Relatively high concentrations of organic peroxide or azo initiators are needed to obtain complete polymerization. After the reaction peak exotherm, polymerization slows down. Initiator concentrations must be high enough to complete conversion. Polymerization is inhibited by oxygen and copper, lead, and sulfur compounds (11). [Pg.81]

The vapor-phase conversion of aniline to DPA over a soHd catalyst has been extensively studied (18,22). In general, the catalyst used is pure aluminum oxide or titanium oxide, prepared under special conditions (18). Promoters, such as copper chromite, nickel chloride, phosphoric acid, and ammonium fluoride, have also been recommended. Reaction temperatures are usually from 400 to 500°C. Coke formed on the catalyst is removed occasionally by burning. In this way, conversions of about 35% and yields of 95% have been reported. Carba2ole is frequently a by-product. [Pg.244]

Acetophenone is separated for hydrogenation to 1-phenylethanol, which is sent to the dehydrator to produce styrene. Hydrogenation is done over a fixed-bed copper-containing catalyst at 115—120°C and pressure of 8100 kPa (80 atm), a 3 1 hydrogen-to-acetophenone ratio, and using a solvent such as ethylbenzene, to give 95% conversion of the acetophenone and 95% selectivity to 1-phenylethanol (186,187). [Pg.140]


See other pages where Copper conversion is mentioned: [Pg.340]    [Pg.340]    [Pg.140]    [Pg.5536]    [Pg.204]    [Pg.14]    [Pg.5535]    [Pg.356]    [Pg.1421]    [Pg.303]    [Pg.340]    [Pg.340]    [Pg.140]    [Pg.5536]    [Pg.204]    [Pg.14]    [Pg.5535]    [Pg.356]    [Pg.1421]    [Pg.303]    [Pg.378]    [Pg.284]    [Pg.408]    [Pg.40]    [Pg.980]    [Pg.3]    [Pg.166]    [Pg.20]    [Pg.165]    [Pg.251]    [Pg.451]    [Pg.150]    [Pg.475]    [Pg.208]    [Pg.469]    [Pg.30]    [Pg.339]    [Pg.528]    [Pg.105]   
See also in sourсe #XX -- [ Pg.1102 ]




SEARCH



© 2024 chempedia.info