Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper complexes addition

Fortunately, in the presence of excess copper(II)nitrate, the elimination reaction is an order of magnitude slower than the desired Diels-Alder reaction with cyclopentadiene, so that upon addition of an excess of cyclopentadiene and copper(II)nitrate, 4.51 is converted smoothly into copper complex 4.53. Removal of the copper ions by treatment with an aqueous EDTA solution afforded in 71% yield crude Diels-Alder adduct 4.54. Catalysis of the Diels-Alder reaction by nickel(II)nitrate is also... [Pg.116]

Hydantoin itself can be detected ia small concentrations ia the presence of other NH-containing compounds by paper chromatography followed by detection with a mercury acetate—diphenylcarba2one spray reagent. A variety of analytical reactions has been developed for 5,5-disubstituted hydantoias, due to their medicinal iaterest. These reactions are best exemplified by reference to the assays used for 5,5-diphenylhydantoiQ (73—78), most of which are based on their cycHc ureide stmcture. Identity tests iaclude the foUowiag (/) the Zwikker reaction, consisting of the formation of a colored complex on treatment with cobalt(II) salts ia the presence of an amine (2) formation of colored copper complexes and (3) precipitation on addition of silver(I) species, due to formation of iasoluble salts at N. ... [Pg.255]

The name xanthate, derived from the Greek "xanthos (meaning blond), was coined by Zeiss in 1815, because the copper complexes that he isolated had a characteristic yellow color (22). Xanthates are formed by nucleophilic addition of an alkoxide ion to carbon disulfide. [Pg.214]

In contrast to the well-established methods for identifying and quantifying naturally occurring chlorophylls, very few reports concern quantitative analysis of chlorophyllin copper complexes in color additives and in foodstuffs. Analytical methods proposed are based on spectral properties, elemental analysis, chromatographic separation, and molecular structure elucidation or a combination of these procedures. [Pg.442]

Sodium copper chlorophyllin, approved by the FDA as a color additive in citrus-based dry beverage mixes, should have a ratio of absorbance (SoretQ band) not less than 3.4 and not more than 3.9. In Europe, purity criteria of the food additives E141[i] and E141[ii], which are copper complexes of chlorophyll and chlorophyllin, respectively, are set out in the EC color specifications that include identification and spectrophotometric assay tests. ... [Pg.442]

In addition, the same group has used copper complexes of these ligands as efficient catalysts for enantioselective Cu-catalysed aza-Diels-Alder reactions of A-sulfonyl imines with Danishefsky s dienes, providing the corresponding six-membered heterocycles with enantioselectivities of up to 80% ee. ... [Pg.198]

Addition of carbethoxynitrenes to olefinic double bonds occurs readily. Addition of both the singlet and the triplet species can take place, the former stereospecifically, the latter not 49>. Additions of sulphonyl nitrenes to double bonds have not been demonstrated except in two instances in which metals were present. The reason is that either addition of the starting sulphonyl azide to the double bond occurs to give a triazoline that loses nitrogen and yields the same aziridine as would have been obtained by the direct addition of the nitrene to the olefin, or the double bond participates in the nitrogen elimination and a free nitrene is never involved 68>. The copper-catalyzed decomposition of benzenesulphonyl azide in cyclohexene did give the aziridine 56 (15%), which was formulated as an attack by the sulphonyl nitrene-copper complex on the double bond 24>. [Pg.32]

The selectivity of the aldol addition can be rationalized in terms of a Zimmer -man-Traxler transition-state model with TS-2-50 having the lowest energy and leading to dr-values of >95 5 for 2-51 and 2-52 [18]. The chiral copper complex, responsible for the enantioselective 1,4-addition of the dialkyl zinc derivative in the first anionic transformation, seems to have no influence on the aldol addition. To facilitate the ee-determination of the domino Michael/aldol products and to show that 2-51 and 2-52 are l -epimers, the mixture of the two compounds was oxidized to the corresponding diketones 2-53. [Pg.55]

The mixture is then chilled in an ice bath for at least 3 hours, and the olive-brown precipitate of the sparingly soluble copper complex of imidazole derivatives is filtered. The product is washed with about 500 ml. of cold water, suspended while moist (Note 4) in 11. of water, and rendered just acid to litmus by the addition of concentrated hydrochloric acid (about 40 ml.). Hydrogen sulfide is then passed into the suspension, with frequent shaking, until precipitation of the copper is complete (2-3 hours). The precipitate is filtered and extracted with 500 ml. of hot water in two or three portions. The clear, light brown to reddish brown filtrate and washings are boiled for 15 minutes, and then 60 g. (0.26 mole) of picric acid is added with stirring heating is continued until solution is complete. [Pg.95]

The neutral 3 dx metallocenes are thus known for x = 3 — 8, but the d9 copper complex has thus far resisted preparation, and the d2 titanocene has been found (54) to be both diamagnetic and dimeric, and is therefore excluded from consideration here. A number of cationic species, corresponding formally to Ti(Cp)2+, and V(Cp)2+, systems are however well known, but it seems very probable that these do not possess pseudo-axial symmetry (see (41) for further discussion), and very recently it has been demonstrated (55) that stable V(Cp)2+ complexes cannot be isolated without the coordination of an additional ligand to the metal. The parent systems are therefore limited to V(Cp)2, Cr(Cp)2, Mn(Cp)2, Fe(Cp)2, Co(Cp)2, and Ni(Cp)2 and the cationic species to Cr(Cp)2+, Fe(Cp)2+, Co(Cp)2+, and Ni (Cp)2+> and the d-d spectra of these systems are now considered individually. [Pg.72]

A still more complicated reaction is the chemiluminescent oxidation of sodium hydrogen sulfide, cysteine, and gluthathione by oxygen in the presence of heavy metal catalysts, especially copper ions 60>. When copper is used in the form of the tetrammin complex Cu(NH3) +, the chemiluminescence is due to excited-singlet oxygen when the catalyst is copper flavin mononucleotide (Cu—FMN), additional emission occurs from excited flavin mononucleotide. From absorption spectroscopic measurements J. Stauff and F. Nimmerfall60> concluded that the first reaction step consists in the addition of oxygen to the copper complex ... [Pg.79]

A number of heteroaromatic monothiocarboxylic acids are formed by Pseudomonas sp. From P. putida, there was isolated pyridine-2,6-di-(mon-othiocarboxylic acid) 46 (Scheme 16). Of interest is the fact that in P. stutzeri KC, a copper complex of 46 is the active agent for a one electron transfer in the bacterial biodegradation of CCI4. Methylation of P. putida extracts provides a number of related structures such as 47. In addition, a P. fluorescens sp. contains 8-hydroxy-4-methoxy-quinoline-2-monothiocarboxylic acid 48.98... [Pg.695]

Several copper enzymes will be discussed in detail in subsequent sections of this chapter. Information about major classes of copper enzymes, most of which will not be discussed, is collected in Table 5.1 as adapted from Chapter 14 of reference 49. Table 1 of reference 4 describes additional copper proteins such as the blue copper electron transfer proteins stellacyanin, amicyanin, auracyanin, rusticyanin, and so on. Nitrite reductase contains both normal and blue copper enzymes and facilitates the important biological reaction NO) — NO. Solomon s Chemical Reviews article4 contains extensive information on ligand field theory in relation to ground-state electronic properties of copper complexes and the application of... [Pg.189]

This work was initiated in 1988 when Villacorta et al.71a reported the asymmetric conjugate addition of a Grignard reagent to 2-cyclohexenone. This study showed that 1,4-adducts with 4-14% ee were obtained in the presence of aminotroponeimine copper complex.713 Enhanced results (74% ee) were obtained by adding HMPA or silyl halides.71b Several other copper complexes were also used for inducing asymmetric conjugate addition reactions. Moderate results were obtained in most cases when THF was used as the solvent and HMPA as the additive. [Pg.477]

The utilization of copper complexes (47) based on bisisoxazolines allows various silyl enol ethers to be added to aldehydes and ketones which possess an adjacent heteroatom e.g. pyruvate esters. An example is shown is Scheme 43[126]. C2-Symmetric Cu(II) complexes have also been used as chiral Lewis acids for the catalysis of enantioselective Michael additions of silylketene acetals to alkylidene malonates[127]. [Pg.32]

Cyclopropanation reactions can be promoted using copper or rhodium catalysts or indeed systems based on other metals. As early as 1965 Nozaki showed that chiral copper complexes could promote asymmetric addition of a carbenoid species (derived from a diazoester) to an alkene. This pioneering study was embroidered by Aratani and co-workers who showed a highly enantioselective process could be obtained by modifying the chiral copper... [Pg.38]

Evans suggests that the catalyst resting state in this reaction is a 55c Cu alkene complex 58, Scheme 4 (35). Variable temperature NMR studies indicate that the catalyst complexes one equivalent of styrene which, in the presence of excess alkene, undergoes ready alkene exchange at ambient temperature but forms only a mono alkene-copper complex at -53°C. Addition of diazoester fails to provide an observable complex. These workers invoke the metallacyclobutane intermediate 60 via a formal [2 + 2] cycloaddition from copper carbenoid alkene complex 59. Formation of 60 is the stereochemistry-determining event in this reaction. The square-planar S Cu(III) intermediate 60 then undergoes a reductive elimination forming the cyclopropane product and Complex 55c-Cu, which binds another alkene molecule. [Pg.22]

In addition to cyclopropanation and nitrenoid transfer, a number of other asymmetric group-transfer reactions have been reported using catalytic amounts of copper complexes. Each of these is relatively underexplored compared to the work described above. [Pg.46]


See other pages where Copper complexes addition is mentioned: [Pg.99]    [Pg.129]    [Pg.908]    [Pg.101]    [Pg.4]    [Pg.81]    [Pg.92]    [Pg.187]    [Pg.138]    [Pg.238]    [Pg.238]    [Pg.167]    [Pg.218]    [Pg.88]    [Pg.176]    [Pg.123]    [Pg.618]    [Pg.223]    [Pg.225]    [Pg.230]    [Pg.233]    [Pg.235]    [Pg.374]    [Pg.288]    [Pg.477]    [Pg.38]    [Pg.3]    [Pg.49]    [Pg.54]   
See also in sourсe #XX -- [ Pg.363 ]




SEARCH



Asymmetric conjugate addition copper complex

Complexing additives

Copper additive

Copper complex catalysis addition

Copper complexes 1,4-addition with

Copper-Grignard complexes, conjugate additions

© 2024 chempedia.info