Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper complexes synthesis

The solution was cooled to room temperature and then filtered into a Buchner funnel with the aid of a water aspirator and the filtrate evaporated in a rotary evaporator. The yellow residue was taken up in dichloromethane (80 mL), filtered again and then the organic layers were washed with water (2 x 30 mL) and brine (1 x 30 mL) in a separatory funnel. The combined aqueous layers were back extracted with dichloromethane (30 mL). The combined organic layers were dried over anhydrous magnesium sulfate and evaporated to dryness to leave the desired compound as a yellow gel (2.96 g, 92%). The purity of the crude product is high enough to be used in the copper complex synthesis, but can be further purified by vacuum distillation of the unreacted salicylaldehyde. [Pg.23]

Available information on the mechanism of cyclocondensation is rather contradictory. According to one hypothesis, both the condensation of aryl halides with copper acetylides and the cyclization occur in the same copper complex (63JOC2163 63JOC3313). An alternative two-stage reaction route has also been considered condensation followed by cyclization (66JOC4071 69JA6464). However, there is no clear evidence for this assumption in the literature and information on the reaction of acetylenyl-substituted acids in conditions of acetylide synthesis is absent. [Pg.58]

The catalytic asymmetric cyclopropanation of an alkene, a reaction which was studied as early as 1966 by Nozaki and Noyori,63 is used in a commercial synthesis of ethyl (+)-(lS)-2,2-dimethylcyclo-propanecarboxylate (18) by the Sumitomo Chemical Company (see Scheme 5).64 In Aratani s Sumitomo Process, ethyl diazoacetate is decomposed in the presence of isobutene (16) and a catalytic amount of the dimeric chiral copper complex 17. Compound 18, produced in 92 % ee, is a key intermediate in Merck s commercial synthesis of cilastatin (19). The latter compound is a reversible... [Pg.346]

Keywords bis(oxazoiine) copper complexes, Lewis-acid catalysts for carbo-cyclic and hefero-Diels-Alder reaction, chiral synthesis... [Pg.304]

These authors further described the synthesis and resolution (by chiral HPLC) of a new C2-symmetric planar-chiral bipyridine ligand [43] (see structure 35 in Scheme 18). They obtained an X-ray crystal structure of the corresponding copper complex proving a bidentate complexation. This system led to high diastereo- (up to 94%) and enantioselectivity (up to 94%) in the... [Pg.107]

The use of chiral bis(oxazoline) copper catalysts has also been often reported as an efficient and economic way to perform asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines with conjugated dienes [81], with the main focus on the application of this methodology towards the preparation of biologically valuable synthons [82]. Only some representative examples are listed below. For example, the copper complex 54 (Scheme 26) has been successfully involved in the catalytic hetero Diels-Alder reaction of a substituted cyclohexadiene with ethyl glyoxylate [83], a key step in the total synthesis of (i )-dihydroactinidiolide (Scheme 30). [Pg.118]

The copper(II) complexes of 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazone) and related compounds are active in vivo agents [151, 158, 159]. The metal complexes of 2-heterocyclic thiosemicarbazones were evaluated for their cytotoxicities [160, 161]. Further studies have revealed that these ligand s iron and copper complexes are effective inhibitors of DNA synthesis at much lower concentrations than the free thiosemicarbazones without apparent cytotoxicity [127]. Although the iron(III) complex of 2-isoformylquinoline thiosemicarbaz-one, 21, is considerably more active than free 21, the copper(II) complex is only moderately more active [127]. [Pg.22]

Arylbenzoxazoles have been prepared in moderate yields by allowing aromatic aldehydes to react with copper complexes of o-nitrosophenols (Scheme 108).172 The role of the copper in reactions of this type is unclear but it may be noted that the uncomplexed nitrosophenols are relatively labile.173 Copper complexes of o-nitrosophenols have also been used for the synthesis of benzoxazines (see Section V,D). [Pg.367]

ARGET ATRP has been successfully applied for polymerization of methyl methacrylate, ft-butyl acrylate and styrene in the presence of Sn(EH)2 (10 mol% vs. alkyl halide initiator or 0.07 mol% vs. monomer) [164,165]. For all monomers, polymerizations were well controlled using between 10 and 50 ppm of copper complexes with highly active TPMA and Me6TREN ligands. ARGET ATRP has also been utilized in the synthesis of block copolymers (poly(n-butyl acrylate)— -polystyrene and polystyrene-Z -poly(n-butyl acrylate) [164,165] and grafting... [Pg.245]

A combination of the SNAr feature and the coordination ability of a copper complex has led to the development of a new O-arylation method that makes use of a triazene as an activating and directing group (Equation (2)).32,33 This protocol, though necessitating a three-step removal sequence of the triazene moiety, has been successfully applied to the total synthesis of vancomycin1 6 and extended to a solid-phase synthesis in which the triazene unit serves as an anchor to the resin.37... [Pg.651]

The copper complex of these bis(oxazoline) compounds can also be used for hetero Diels-Alder reactions of acyl phosphonates with enol ethers.43 5 A favorable acyl phosphonate-catalyst association is achieved via complexation between the vicinal C=0 and P=0 functional groups. The acyl phosphonates are activated, leading to facile cycloaddition with electron-rich alkenes such as enol ethers. The product cyclic enol phosphonates can be used as building blocks in the asymmetric synthesis of complicated molecules. Scheme 5-36 shows the results of such reactions. [Pg.296]

Chapter 2 to 6 have introduced a variety of reactions such as asymmetric C-C bond formations (Chapters 2, 3, and 5), asymmetric oxidation reactions (Chapter 4), and asymmetric reduction reactions (Chapter 6). Such asymmetric reactions have been applied in several industrial processes, such as the asymmetric synthesis of l-DOPA, a drug for the treatment of Parkinson s disease, via Rh(DIPAMP)-catalyzed hydrogenation (Monsanto) the asymmetric synthesis of the cyclopropane component of cilastatin using a copper complex-catalyzed asymmetric cyclopropanation reaction (Sumitomo) and the industrial synthesis of menthol and citronellal through asymmetric isomerization of enamines and asymmetric hydrogenation reactions (Takasago). Now, the side chain of taxol can also be synthesized by several asymmetric approaches. [Pg.397]

Recent Advance of Asymmetric Synthesis of (1R)-tr sms-Chrysanthemic Acid with a New Chiral Copper Complex... [Pg.37]

Asymmetric synthesis of 2,5-dimethyl-2,4-hexadiene (28) and /-menthyl diazoacetate (29) with chiral copper complexes (30) was successfully conducted by Aratani et al. [13] to afford the (1 A)-chrysanthem ic acid /-menthyl ester (31) in high optical and chemical yield. Since this finding, a lot of chiral copper complexes have been reported and applied to the asymmetric synthesis of (IR)-chrysanthemate. However, these copper complexes required more than 1 mol% of the catalyst and the cis/trans ratio still remains unsatisfactory. Moreover, /-menthyl ester was crucial for the high enantioselectivity. Given an industrial production of... [Pg.37]

The use of chiral copper complexes in asymmetric synthesis was inaugurated in 1966 when the first homogeneous asymmetric metal-catalyzed reaction was reported a copper catalyzed cyclopropanation (2). At the end of 1999, more than 25 distinct reactions were reported wherein the use of a chiral copper complex had induced an enantioselective transformation. The field grew quickly and the best is most likely yet to come. [Pg.3]

Three major approaches have been followed to provide reactive dyes in this important sector. One category is closely related to the reddish blue monoazo 1 1 copper complexes already described (section 7.5.8). To provide the higher substantivity and deeper intensity for build-up to navy blue shades, a second unmetallised azo grouping is introduced. As with the brown dyes, the A—>M—>E pattern is adopted for their synthesis. Component A is normally a sulphonated aniline, M an aminophenol or aminocresol and E a sulphonated naphthol or aminonaphthol. The reactive system (Z) is usually, but not invariably, located on the E component and the copper atom always coordinates with an o,o -dihydroxyazo grouping provided by the M and E components (7.109). [Pg.408]


See other pages where Copper complexes synthesis is mentioned: [Pg.687]    [Pg.595]    [Pg.92]    [Pg.117]    [Pg.123]    [Pg.186]    [Pg.117]    [Pg.191]    [Pg.84]    [Pg.51]    [Pg.4]    [Pg.92]    [Pg.754]    [Pg.764]    [Pg.841]    [Pg.1122]    [Pg.171]    [Pg.222]    [Pg.162]    [Pg.169]    [Pg.218]    [Pg.158]    [Pg.618]    [Pg.225]    [Pg.214]    [Pg.653]    [Pg.137]    [Pg.38]    [Pg.271]   
See also in sourсe #XX -- [ Pg.184 ]




SEARCH



Copper -cyclam complex synthesis

Copper halide complex, synthesis

Copper synthesis

Phthalocyanine copper complex, synthesis

SYNTHESIS with copper complexes

© 2024 chempedia.info