Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper bromide, chloride

Copper 1) chloride, bromide and cyanide were used by Sandmeyer to introduce a chlorine, a bromine atom and a cyanide group respectively into a benzene ring by addition to the phenyl diazonium salt. [Pg.416]

Although It IS possible to prepare aryl chlorides and aryl bromides by electrophilic aromatic substitution it is often necessary to prepare these compounds from an aromatic amine The amine is converted to the corresponding diazonmm salt and then treated with copper(I) chloride or copper(I) bromide as appropriate... [Pg.948]

Diazotization of a primary arylamine followed by treatment of the diazo mum salt with copper(l) bromide or copper(l) chloride yields the corre spending aryl bromide or aryl chloride... [Pg.973]

For the in situ preparation of the required arenediazonium salt from an aryl amine by application of the diazotization reaction, an acid HX is used, that corresponds to the halo substituent X to be introduced onto the aromatic ring. Otherwise—e.g. when using HCl/CuBr—a mixture of aryl chloride and aryl bromide will be obtained. The copper-(l) salt 2 (chloride or bromide) is usually prepared by dissolving the appropriate sodium halide in an aqueous solution of copper-(ll) sulfate and then adding sodium hydrogensulfite to reduce copper-(ll) to copper-(1). Copper-(l) cyanide CuCN can be obtained by treatment of copper-(l) chloride with sodium cyanide. [Pg.248]

Kupfer-bromid, n. copper bromide, specif, cupric bromide, copper(II) bromide, -bro-mtir, n. cuprous bromide, copper(I) bromide, -chlorid, n. copper chloride, specif, cupric chloride, copper(II) chloride, -chloriir, n. cuprous chloride, copper(I) chloride, -cyamd, Ti. copper cyanide, specif, cupric cyanide, copper(II) cyanide, -cyaniir, n. cuprous cyanide, copper(I) cyanide, -dom, m. slag from liquated copper, -draht, m. copper wire, -drahtnetz, n. copper gauze, -drehspane,... [Pg.265]

Conjugate addition, 34-5, 51-2,53, 132, 133 Conjugate hydroxymethylation, 59-60 Copper(n) bromide, 54 Copper([) chloride, 120 Copper(n) chloride, 120 Copper(i) cyanide, 7,52, 53 Copper(i) iodide, 54 Corey s internal quench, 104 Cyanohydrin trimethylsilyl ether, 137 Cycloaddition. 34,112 Cydobutane-l,2-dione, 135 Cyclohept-2-dione, 135 Cyclohex-2-enone, 52,123 Cyclohcxa-1,3-diene, 26 Cyclohexane carboxaldehyde, 22-3,69 73,78... [Pg.83]

Many of the d-block elements form characteristically colored solutions in water. For example, although solid copper(II) chloride is brown and copper(II) bromide is black, their aqueous solutions are both light blue. The blue color is due to the hydrated copper(II) ions, [Cu(H20)fJ2+, that form when the solids dissolve. As the formula suggests, these hydrated ions have a specific composition they also have definite shapes and properties. They can be regarded as the outcome of a reaction in which the water molecules act as Lewis bases (electron pair donors, Section 10.2) and the Cu2+ ion acts as a Lewis acid (an electron pair acceptor). This type of Lewis acid-base reaction is characteristic of many cations of d-block elements. [Pg.788]

Alkoxybenzenes were highly regioselectively halogenated by use of copper(II) halides supported on alumina to give 4-halo-alkoxybenzenes in high yield. Bromination of alkoxybenzenes with alumina-supported copper(II) bromide occurred at lower temperature than chlorination with alumina-supported copper(II) chloride (ref. 14). [Pg.22]

CHROMIUM TRIOXIDE-PYRIDINE COMPLEX, preparation in situ, 55, 84 Chrysene, 58,15, 16 fzans-Cinnamaldehyde, 57, 85 Cinnamaldehyde dimethylacetal, 57, 84 Cinnamyl alcohol, 56,105 58, 9 2-Cinnamylthio-2-thiazoline, 56, 82 Citric acid, 58,43 Citronellal, 58, 107, 112 Cleavage of methyl ethers with iodotri-methylsilane, 59, 35 Cobalt(II) acetylacetonate, 57, 13 Conjugate addition of aryl aldehydes, 59, 53 Copper (I) bromide, 58, 52, 54, 56 59,123 COPPER CATALYZED ARYLATION OF /3-DlCARBONYL COMPOUNDS, 58, 52 Copper (I) chloride, 57, 34 Copper (II) chloride, 56, 10 Copper(I) iodide, 55, 105, 123, 124 Copper(I) oxide, 59, 206 Copper(ll) oxide, 56, 10 Copper salts of carboxylic acids, 59, 127 Copper(l) thiophenoxide, 55, 123 59, 210 Copper(l) trifluoromethanesulfonate, 59, 202... [Pg.114]

Whereas acyclic sulfoxides form complexes with various metal salts, thiirane oxides react with copper(II) chloride or bromide in benzene at room temperature to give the thiolsulfonate 146a. In alcoholic solution below 0°C the major products are sulfinates (149). Similar results are obtained in the reaction of thiirane oxides with ethanesulfinyl chloride as summarized in equation 60. [Pg.424]

Early studies [170] of copper(II) complexes of thiosemicarbazones were 2-formylpyridine iV-methylthiosemicarbazone, 30, 6-methyl-2-formylpyridine Ai-methylthiosemicarbazone, 31, and 2-formylpyridine " JV-dimethylthiosemi-carbazone, 32. With copper(II) chloride and bromide, monomeric complexes of stoichiometry [Cu(L)A2] were isolated for each of these thiosemicarbazones. All six complexes had a band in the 14000-15000 cm spectral region, but their stereochemistry was not specified. [Pg.24]

Copper(II) complexes of 2,6-lutidylphenylketone thiosemicarbazone, 38, have been prepared from copper(II) chloride and copper(II) bromide [186]. Similar to 2-pyridyl thiosemicarbazones, 38-H coordinates via the ring nitrogen, the azomethine nitrogen and the thiol sulfur based on infrared spectral assignments. Magnetic susceptibilities and electron spin resonance spectra indicate dimeric complexes and both are formulated as [Cu(38-H)A]2 with bridging sulfur atoms. The electronic spectra of both halide complexes show band maxima at 14500-14200 cm with shoulders at 12100 cm S which is consistent with a square pyramidal stereochemistry for a dimeric copper(II) center. [Pg.27]

The rapid autocatalytic dissolution of aluminium, magnesium or zinc in 9 1 methanol-carbon tetrachloride mixtures is sufficiently vigorous to be rated as potentially hazardous. Dissolution of zinc powder is subject to an induction period of 2 h, which is eliminated by traces of copper(II) chloride, mercury(II) chloride or chromium(III) bromide. [Pg.196]

The protected propargylamines 224 (R = H, CH2C02Me or CH2CH2C02Me) react with aqueous formaldehyde under copper bromide catalysis to yield the allene derivatives 225. Deprotection with ethereal hydrogen chloride affords the free amines218. [Pg.576]

Chromyl chloride, 4054 Cobalt(II) bromide, 0263 Cobalt(II) chloride, 4048 Cobalt(III) chloride, 4122 Cobalt trifluoride, 4200 Copper(I) bromide, 0265 Copper(I) chloride, 4056... [Pg.235]

The metal-catalysed autoxidation of alkenes to produce ketones (Wacker reaction) is promoted by the presence of quaternary ammonium salts [14]. For example, using copper(II) chloride and palladium(II) chloride in benzene in the presence of cetyltrimethylammonium bromide, 1-decene is converted into 2-decanone (73%), 1,7-octadiene into 2,7-octadione (77%) and vinylcyclohexane into cyclo-hexylethanone (22%). Benzyltriethylammonium chloride and tetra-n-butylammo-nium hydrogen sulphate are ineffective catalysts. It has been suggested that the process is not micellar, although the catalysts have the characteristics of those which produce micelles. The Wacker reaction is also catalysed by rhodium and ruthenium salts in the presence of a quaternary ammonium salt. Generally, however, the yields are lower than those obtained using the palladium catalyst and, frequently, several oxidation products are obtained from each reaction [15]. [Pg.461]

In order to modulate the reactivity of intermediate 331, it was transformed into its copper derivative by treatment with copper(I) bromide or iodide in THF at —78 °C, and then was allowed to react with a,/3-unsaturated carbonyl compounds (to give compounds 343 resulting from a conjugated addition), acyl chlorides (to give ketones 344) and copper(II) chloride (to dimerize giving compounds 345) (Scheme 100)"° ". ... [Pg.703]

Also in the case of intennediate 374, a lithium-copper transmetallation with a copper(I) halide (bromide or chloride) allowed one to carry out the conjugate addition [to electrophilic olefins R CH = CH2Z (Z = COR, CO2R) giving compounds 381 in 31-76% yield], the acylation (with acyl chlorides yielding ketones 382 in 35-65% yield) and dimerization [using copper(II) chloride as the additive, to give compound 383 in 59% yield] processes ... [Pg.710]

Preparation of l-ljndecen-4-yne by Reaction of Octynylmagnesium Bromide with Allyl Bromide in the Presence of Copper(l)Chloride... [Pg.224]

A solution of 0.30 mol of octynylmagnesium bromide in - 300 ml of THF is prepared starting from 0.35 mol of ethyl bromide and 0.30 mol of 1-octyne (for the procedure see p. 29). Powdered copper(I)chloride (2 g, technical grade) is added at room temperature. After 15 min... [Pg.224]

Coupling of Propargyl Bromide with (he Grignard Derivative of the O-Protected Propargyl Alcohol in the Presence of Copper(I)Chloride. Synthesis or 2 -Pentadiyn-l-ol... [Pg.225]


See other pages where Copper bromide, chloride is mentioned: [Pg.111]    [Pg.107]    [Pg.308]    [Pg.17]    [Pg.19]    [Pg.19]    [Pg.1726]    [Pg.136]    [Pg.177]    [Pg.127]    [Pg.138]    [Pg.295]    [Pg.390]    [Pg.95]    [Pg.96]    [Pg.108]    [Pg.208]    [Pg.185]    [Pg.175]    [Pg.90]    [Pg.92]    [Pg.92]   


SEARCH



Copper bromide

Copper chloride

Diphenyl copper bromide/chloride

Session IV Thermochemical copper chloride and calcium bromide processes

© 2024 chempedia.info