Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Convective diffusion equation with chemical reactions

The phenomena and processes described can be modeled by convective diffusion equations with chemical reactions. In the simplest model, we may apply these equations in a cylindrical capillary and by means of a capillary model to a porous medium. Assuming dilute solutions, rapid chemical reactions, the double-layer thickness to the soil pore radius and the Peclet number based on the pore radius both small, the overall transport rate for the ith species in a straight cylindrical capillary is... [Pg.399]

Convective diffusion equation with a volume reaction. If a volume (homogeneous) chemical reaction proceeds in the bulk of flow, the convective diffusion... [Pg.111]

A quantitative strategy is discussed herein to design isothermal packed catalytic tubular reactors. The dimensionless mass transfer equation with unsteady-state convection, diffusion, and multiple chemical reactions represents the fundamental starting point to accomplish this task. Previous analysis of mass transfer rate processes indicates that the dimensionless molar density of component i in the mixture I must satisfy (i.e., see equation 10-11) ... [Pg.563]

The advection—diffusion equation with a source term can be solved by CFD algorithms in general. Patankar provided an excellent introduction to numerical fluid flow and heat transfer. Oran and Boris discussed numerical solutions of diffusion—convection problems with chemical reactions. Since fuel cells feature an aspect ratio of the order of 100, 0(100), the upwind scheme for the flow-field solution is applicable and proves to be very effective. Unstructured meshes are commonly employed in commercial CFD codes. [Pg.490]

In what follows, the preceding evaluation procedure is employed in a somewhat different mode, the main objective now being to obtain expressions for the heat or mass transfer coefficient in complex situations on the basis of information available for some simpler asymptotic cases. The order-of-magnitude procedure replaces the convective diffusion equation by an algebraic equation whose coefficients are determined from exact solutions available in simpler limiting cases [13,14]. Various cases involving free convection, forced convection, mixed convection, diffusion with reaction, convective diffusion with reaction, turbulent mass transfer with chemical reaction, and unsteady heat transfer are examined to demonstrate the usefulness of this simple approach. There are, of course, cases, such as the one treated earlier, in which the constants cannot be obtained because exact solutions are not available even for simpler limiting cases. In such cases, the procedure is still useful to correlate experimental data if the constants are determined on the basis of those data. [Pg.20]

Axial dispersion in packed beds, and Taylor dispersion of a tracer in a capillary tube, are described by the same form of the mass transfer equation. The Taylor dispersion problem, which was formulated in the early 1950s, corresponds to unsteady-state one-dimensional convection and two-dimensional diffusion of a tracer in a straight tube with circular cross section in the laminar flow regime. The microscopic form of the generalized mass transfer equation without chemical reaction is... [Pg.593]

Since contributions from convective transport are negligible in a porous catalyst, one begins with the steady-state mass transfer equation that includes diffusion and multiple chemical reactions for component i (i.e., see equations 9-18 and 27-14) ... [Pg.823]

Here, p is mass density and yk th mass fraction, t is time and div the divergence operator v is local mass flow velocity (vector) and jk the it-th molecular diffusion flux vector, added to the term pykV representing the convection of particles Ck by the motion of a material element as a whole. So the instantaneous local change (increase) of the Ck-concentration (mass per unit volume) equals minus the amount that escapes from a volume element (the divergence term) plus the amount produced by chemical reactions. Physically, the balance makes sense if we know how the flux jk depends on the gradients (most simply by Pick s law), and how the rates of possible reactions depend on the local state of the element. If also the latter information is available then the balance takes the form of convective diffusion equation, possibly with chemical reactions. [If we have no information on the reaction rates, the w -terms can be eliminated from Eqs. (C.2) by an algebraic transformation in the same manner as in Chapter 4 indeed, it is sufficient to substitute for W, in (4.3.2) and to define the components of column vector n as follows from (C.2).] Observe finally that we have... [Pg.572]

In the first approach it is assumed, as well, that the reaction proceeds by zero-order. Since the rate term d> is not a function of concentration, the continuity equation is not required so we can deal with the more convenient energy equation. Semenov, like Mallard and Le Chatelier, examined the thermal wave as if it were made up of two parts. The unbumed gas part is a zone of no chemical reaction, and the reaction part is the zone in which the reaction and diffusion terms dominate and the convective term can be ignored. Thus, in the first zone (I), the energy equation reduces to... [Pg.164]

The systems considered here are isothermal and at mechanical equilibrium but open to exchanges of matter. Hydrodynamic motion such as convection are not considered. Inside the volume V of Fig. 8, N chemical species may react and diffuse. The exchanges of matter with the environment are controlled through the boundary conditions maintained on the surface S. It should be emphasized that the consideration of a bounded medium is essential. In an unbounded medium, chemical reactions and diffusion are not coupled in the same way and the convergence in time toward a well-defined and asymptotic state is generally not ensured. Conversely, some regimes that exist in an unbounded medium can only be transient in bounded systems. We approximate diffusion by Fick s law, although this simplification is not essential. As a result, the concentration of chemicals Xt (i = 1,2,..., r with r sN) will obey equations of the form... [Pg.7]

In addition to overall mass conservation, we are concerned with the conservation laws for individual chemical species. Beginning in a way analogous to the approach for the overall mass-conservation equation, we seek an equation for the rate of change of the mass of species k, mk. Here the extensive variable is N = mu and the intensive variable is the mass fraction, T = mk/m. Homogeneous chemical reaction can produce species within the system, and species can be transported into the system by molecular diffusion. There is convective transport as well, but it represented on the left-hand side through the substantial derivative. Thus, in the Eulerian framework, using the relationship between the system and the control volume yields... [Pg.92]

If the diffusion process is coupled with other influences (chemical reactions, adsorption at an interface, convection in solution, etc.), additional concentration dependences will be added to the right side of Equation 2.11, often making it analytically insoluble. In such cases it is profitable to retreat to the finite difference representation and model the experiment on a digital computer. Modeling of this type, when done properly, is not unlike carrying out the experiment itself (provided that the discretization error is equal to or smaller than the accessible experimental error). The method is known as digital simulation, and the result obtained is the finite difference solution. This approach is described in more detail in Chapter 20. [Pg.20]

The real power of digital simulation techniques lies in their ability to predict current-potential-time relationships when the reactants or products of an electrode reaction participate in some intervening chemical reaction. These kinetic complications often result in a fairly difficult differential equation (when combined with the conditions for diffusion or convection encountered in electrochemical problems) that resists solution by ordinary means. Through simulation, however, the effect of any number of chemical steps may be predicted. In practice, it is best to limit these predictions to cases where the reactants and products participate in one or two rate-determining steps each independent step adds another dimensionless kinetics parameter that must be varied over the range of... [Pg.601]

In this chapter, we present most of the equations that apply to the systems and processes to be dealt with later. Most of these are expressed as equations of concentration dynamics, that is, concentration of one or more solution species as a function of time, as well as other variables, in the form of differential equations. Fundamentally, these are transport (diffusion-, convection-and migration-) equations but may be complicated by chemical processes occurring heterogeneously (i.e. at the electrode surface - electrochemical reaction) or homogeneously (in the solution bulk chemical reaction). The transport components are all included in the general Nernst-Planck equation (see also Bard and Faulkner 2001) for the flux Jj of species j... [Pg.6]

Example 9.11 Modeling of a nonisothermal plug flow reactor Tubular reactors are not homogeneous, and may involve multiphase flows. These systems are called diffusion convection reaction systems. Consider the chemical reaction A -> bB described by a first-order kinetics with respect to the reactant A. For a nonisothermal plug flow reactor, modeling equations are derived from mass and energy balances... [Pg.483]

In this text, the conversion rate is used in relevant equations to avoid difficulties in applying the correct sign to the reaction rate in material balances. Note that the chemical conversion rate is not identical to the chemical reaction rate. The chemical reaction rate only reflects the chemical kinetics of the system, that is, the conversion rate measured under such conditions that it is not influenced by physical transport (diffusion and convective mass transfer) of reactants toward the reaction site or of product away from it. The reaction rate generally depends only on the composition of the reaction mixture, its temperature and pressure, and the properties of the catalyst. The conversion rate, in addition, can be influenced by the conditions of flow, mixing, and mass and heat transfer in the reaction system. For homogeneous reactions that proceed slowly with respect to potential physical transport, the conversion rate approximates the reaction rate. In contrast, for homogeneous reactions in poorly mixed fluids and for relatively rapid heterogeneous reactions, physical transport phenomena may reduce the conversion rate. In this case, the conversion rate is lower than the reaction rate. [Pg.6]

Since equations (1), (2a), and (3) are formally the same, it is necessary to find criteria to distinguish the three cases. This is possible because 6 varies so much with stirring speed, and the diffusion coefficient D is affected by viscosity while the parameters in chemical rates usually are not. Different metals dissolve at the same rate in the same solution if the rate is controlled by convection-diffusion. The activation energy of diffusive transport, as measured from temperature coefficients, is normally much lower than the activation energy of chemical processes (3000-6000 cal/mole compared to 10,000-20,000 cal/mole, although some chemical reactions do have lower values). [Pg.359]

The equations (3.109), (3.117) or (3.118) and (3.120) for the velocity, thermal and concentration boundary layers show some noticeable similarities. On the left hand side they contain convective terms , which describe the momentum, heat or mass exchange by convection, whilst on the right hand side a diffusive term for the momentum, heat and mass exchange exists. In addition to this the energy equation for multicomponent mixtures (3.118) and the component continuity equation (3.25) also contain terms for the influence of chemical reactions. The remaining expressions for pressure drop in the momentum equation and mass transport in the energy equation for multicomponent mixtures cannot be compared with each other because they describe two completely different physical phenomena. [Pg.300]

The computer simulations of chemical kinetics in a straight tube reactor [1065] were based on an equation combining diffusion, convection, and reaction terms. The sample dispersion without chemical reactions gave very similar results to that of Vanderslice [1061], yet the value of that paper is that it expanded the study to computation of FIA response curves for fast and slower chemical reactions. The numerically evaluated equation was similar to that of Vanderslice [1061], however with inclusion of a term for reaction rate. Two model systems were chosen and spectro-photometrically monitored in a FIA system with appropriately con-... [Pg.123]

The following discussion represents a detailed description of the mass balance for any species in a reactive mixture. In general, there are four mass transfer rate processes that must be considered accumulation, convection, diffusion, and sources or sinks due to chemical reactions. The units of each term in the integral form of the mass transfer equation are moles of component i per time. In differential form, the units of each term are moles of component i per volnme per time. This is achieved when the mass balance is divided by the finite control volume, which shrinks to a point within the region of interest in the limit when aU dimensions of the control volume become infinitesimally small. In this development, the size of the control volume V (t) is time dependent because, at each point on the surface of this volume element, the control volnme moves with velocity surface, which could be different from the local fluid velocity of component i, V,. Since there are several choices for this control volume within the region of interest, it is appropriate to consider an arbitrary volume element with the characteristics described above. For specific problems, it is advantageous to use a control volume that matches the symmetry of the macroscopic boundaries. This is illustrated in subsequent chapters for catalysts with rectangular, cylindrical, and spherical symmetry. [Pg.253]


See other pages where Convective diffusion equation with chemical reactions is mentioned: [Pg.904]    [Pg.379]    [Pg.80]    [Pg.649]    [Pg.210]    [Pg.176]    [Pg.71]    [Pg.263]    [Pg.379]    [Pg.901]    [Pg.669]    [Pg.128]    [Pg.292]    [Pg.10]    [Pg.14]    [Pg.222]    [Pg.36]    [Pg.207]    [Pg.230]    [Pg.292]    [Pg.334]    [Pg.6]    [Pg.207]    [Pg.216]    [Pg.1159]    [Pg.37]    [Pg.216]    [Pg.255]    [Pg.262]   
See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Chemical reaction equations

Chemicals equations

Convection convective-diffusion equation

Convection equation

Convection-diffusion equation

Convection-diffusion-reaction equation

Convective diffusion

Convective diffusion equation

Diffusion chemical reaction

Diffusion equations

Diffusion reactions

Diffusion with convection

Diffusion with reaction

Diffusivity chemical

Diffusivity reactions

Dimensionless Form of the Generalized Mass Transfer Equation with Unsteady-State Convection, Diffusion, and Chemical Reaction

Reaction equations

Reaction with chemical

Reaction-convection-diffusion

© 2024 chempedia.info