Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Controlled reactor, stability

In the wet oxidation process, materials partially or completely dissolve into a homogeneous, condensed-phase mixture of oxygen and water, and chemical reactions between the material and oxygen take place in the bulk water phase. This condensed-phase makes wet oxidation an ideal process to transform materials which would otherwise be non-soluble in water to a harmless mixture of carbon dioxide and water. Since oxidation reactions are also exothermic, the high thermal mass of supercritical water makes this reaction medium better suited for thermal control, reactor stability, and heat dissipation. The purpose of this research was to establish a new method for selectively oxidizing waste hydrocarbons into new and reusable products. [Pg.439]

Heat Release and Reactor Stability. Highly exothermic reactions, such as with phthaHc anhydride manufacture or Fischer-Tropsch synthesis, compounded with the low thermal conductivity of catalyst peUets, make fixed-bed reactors vulnerable to temperature excursions and mnaways. The larger fixed-bed reactors are more difficult to control and thus may limit the reactions to jacketed bundles of tubes with diameters under - 5 cm. The concerns may even be sufficiently large to favor the more complex but back-mixed slurry reactors. [Pg.519]

Chemical Kinetics, Tank and Tubular Reactor Fundamentals, Residence Time Distributions, Multiphase Reaction Systems, Basic Reactor Types, Batch Reactor Dynamics, Semi-batch Reactors, Control and Stability of Nonisotheimal Reactors. Complex Reactions with Feeding Strategies, Liquid Phase Tubular Reactors, Gas Phase Tubular Reactors, Axial Dispersion, Unsteady State Tubular Reactor Models... [Pg.722]

Worldwide reactors continued to be built until the accident at Chernobyl occurred. Several features made the Chernobyl accident unique to a Soviet style reactor. One was the use of graphite as a moderator, which caught fire. Another was the absence of water to contain radioactivity. But, the most important may have been an inadequate containment structure. There were also problems in controlling the stability of the reactor and the control rods had to be changed frequently in order to keep the reactor stable. [Pg.214]

There are several control problems in chemical reactors. One of the most commonly studied is the temperature stabilization in exothermic monomolec-ular irreversible reaction A B in a cooled continuous-stirred tank reactor, CSTR. Main theoretical questions in control of chemical reactors address the design of control functions such that, for instance (i) feedback compensates the nonlinear nature of the chemical process to induce linear stable behavior (ii) stabilization is attained in spite of constrains in input control (e.g., bounded control or anti-reset windup) (iii) temperature is regulated in spite of uncertain kinetic model (parametric or kinetics type) or (iv) stabilization is achieved in presence of recycle streams. In addition, reactor stabilization should be achieved for set of physically realizable initial conditions, (i.e., global... [Pg.36]

The interest in periodically forced systems extends beyond performance considerations for a single reactor. Stability of structures and control characteristics of chemical plants are determined by their responses to oscillating loads. Epidemics and harvests are governed by the cycle of seasons. Bifurcation and stability analysis of periodically forced systems is especially important in the... [Pg.227]

Amundson, N. R. and Aris, R., 1958, An analysis of chemical reactor stability and control—I. Chem. Engng Sci 7,121-131. [Pg.280]

An analysis of chemical reactor stability and control-IV Mixed derivative and proportional control. (with D.J. Nemanic, J.W. Tierney, and N. R. Amundson). Chem. Eng. Sci. 11, 199-206 (1959). [Pg.456]

The final subject discussed in this chapter is the issue of reactor scaleup. Moving from a laboratory test tube in a constant temperature bath to a 20-L pilot plant reactor to a 200,000-L commercial plant reactor involves critical design and control decisions. One major problem is the reduction of the heat transfer area relative to the reactor volume (and heat transfer duty) as we move to larger reactors. This has an important effect on temperature control and reactor stability. [Pg.2]

Effect of Heat Of Reaction Figure 2.5 shows what happens if the heat of reaction is 10 or 20% higher than the base case value. The conversion is 80% for all these cases. As expected, the heat of reaction has no effect on the reactor volume, diameter, or area. These parameters are set by throughput, temperature, and conversion. Higher heats of reaction require higher heat transfer rates Q, which lower the jacket temperature and increase the cooling water flowrate. As shown in Figure 2.6, the result is an increase in the reactor stability index, which indicates more difficult control problems. [Pg.38]

Of course, there is no guarantee that the steady-state economic optimum set of reactor compositions is the best set in terms of reactor stability. This is one of the many classical examples of the inherent engineering tradeoff between steady-state economics and dynamic controllability that occurs in many processes. [Pg.52]

The first reactor in the 3-CSTR process has a conversion rate of 72.8%, and the reactant concentration in this first reactor is 2.18 kmol/m3. The reactor volume is low (14.3 m3), and the jacket heat transfer area is only 24.5 m2. The resulting jacket temperature (300 K) is almost down to the inlet cooling water temperature of 294 K. Linear analysis gives a Nyquist plot that never drops into the third quadrant, so the critical (—1,0) point cannot be encircled in a counterclockwise direction. This is required for closedloop stability because the openloop system is unstable and has a positive pole. Thus a proportional controller cannot stabilize this first reactor. [Pg.131]

Figure 7.5b gives Nyquist plots for the process with the furnace (FS2). First, note that the system is now openloop-sfaWe for values of reactor gain KR = 2, 3, which was not the case for the FS 1 flowsheet. Second, observe that even for reactor gains up to about KR = 8 it is possible to use a P controller to stabilize the system. Remember that we are talking about the GYi(s) controller, with the G<2ls) controller on automatic (Kcl = 2.13 and rn = 1-94). [Pg.375]

Batch suspension reactors are, theoretically, the kinetic equivalent of water-cooled mass reactors. The major new problems are stabilization of the viscous polymer drops, prediction of particle size distribution, etc. Particle size distribution was found to be determined early in the polymerization by Hopff et al. (28, 29,40). Church and Shinnar (12) applied turbulence theory to explain the stabilization of suspension polymers by the combined action of protective colloids and turbulent flow forces. Suspension polymerization in a CSTR without coalescence is a prime example of the segregated CSTR treated by Tadmor and Biesenberger (51) and is discussed below. In a series of papers, Goldsmith and Amundson (23) and Luss and Amundson (39) studied the unique control and stability problems which arise from the existence of the two-phase reaction system. [Pg.23]

The novel cup-and-cap reactor allows kinetic determination of small catalyst loadings, accurate control, and stability of process operating condi-... [Pg.62]

As is often the case, a completely different set of factors influences the choice of reactor from a control standpoint. Our main focus for control is stability and responsiveness to changes in the manipulated variables. We look at the det ails of these issues in the following sections but make some broad brush generalizations at this point. [Pg.85]

We have used the reactor cooling water valve to stabilize the system by controlling reactor temperature. However there is no specific temperature at which the reactor must operate. The best way to manage the reactor temperature setpoint is not immediately obvious. It might be used in conjunction with the production rate controller, i.e., higher temperatures may be needed to increase throughputs. It might be adjusted to maximize yields and suppress undesired by-products. [Pg.257]

Luss and Amundson (LI 3) employed this model to analyze reactor stability and control for segregated two-phase systems. The Monte Carlo simulation was employed to model the age distribution of segregated drops in the vessel. Conditions of operation under which heat-transfer effects may control the design of the reactor were given. It was shown that some steady states may be obtained in which the temperature of some drops greatly exceeds the average dispersed-phase temperature. The coalescence-redispersion problem was not considered here because of unreasonable computation times. [Pg.255]

Cell recycle fermentors consist of two main units a vessel where the biomass is allowed to grow, and a membrane separation unit (as in Figure 7.40). Vessels are usually designed to insure a uniform concentration of nutrients and pH throughout the whole volume. Due to complete mixing, process control and stability of the microbial slurry are not difficult to achieve.88 After anaerobic stabilization, when the biomass is well developed, the reactor biomass is pumped to the UF unit where solid-liquid separation occurs. The sludge is flushed back to the reactor. In most cases, the flow rate of nutrient feed is kept equal to the permeate flow rate thus keeping a constant liquid level in the anaerobic reactor. [Pg.468]


See other pages where Controlled reactor, stability is mentioned: [Pg.219]    [Pg.632]    [Pg.299]    [Pg.31]    [Pg.38]    [Pg.42]    [Pg.101]    [Pg.282]    [Pg.326]    [Pg.209]    [Pg.76]    [Pg.280]    [Pg.52]    [Pg.104]    [Pg.305]    [Pg.375]    [Pg.25]    [Pg.1519]    [Pg.2344]    [Pg.224]    [Pg.68]    [Pg.504]    [Pg.293]   
See also in sourсe #XX -- [ Pg.565 ]




SEARCH



Control stability

Reactor stability

Reactors control

© 2024 chempedia.info