Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuity energy balance

The continuity equation gives V2 = V AJa, and Vj = Q/A. The pressure drop measured by the manometer is pi —p2= (p — p)gA . Substituting these relations into the energy balance and rearranging, the desired expression for the flow rate is found. [Pg.635]

Much of the basic theory of reaction kinetics presented in Sec. 7 of this Handbook deals with homogeneous reaclions in batch and continuous equipment, and that material will not be repeated here. Material and energy balances and sizing procedures are developed for batch operations in ideal stirred tanks—during startup, continuation, and shutdown—and for continuous operation in ideal stirred tank batteries and plug flow tubulars and towers. [Pg.2098]

The energy equation of a continuing system can be presented by means of the first law of thermodynamics and the energy balance of a flow system as... [Pg.51]

Find the power P required by the pump in the system shown in Fig. 4.5. The energy balance of a continuing system, when gives... [Pg.57]

The energy balance equation can be applied between any two sections in a continuous fluid, If the fluid is not moving, the kinetic energy and the frictional loss are both zero, and therefore ... [Pg.233]

Setting f = Tout, H = Hout, and so on, specializes the integral energy balance of Equation (5.14) to a perfectly mixed, continuous-flow stirred tank ... [Pg.167]

This paper presents the physical mechanism and the structure of a comprehensive dynamic Emulsion Polymerization Model (EPM). EPM combines the theory of coagulative nucleation of homogeneously nucleated precursors with detailed species material and energy balances to calculate the time evolution of the concentration, size, and colloidal characteristics of latex particles, the monomer conversions, the copolymer composition, and molecular weight in an emulsion system. The capabilities of EPM are demonstrated by comparisons of its predictions with experimental data from the literature covering styrene and styrene/methyl methacrylate polymerizations. EPM can successfully simulate continuous and batch reactors over a wide range of initiator and added surfactant concentrations. [Pg.360]

Based on this configuration, the reformer and combustor are modeled with partial differential equations. Since the thickness of the plates is relatively small, only the flow direction is considered. Using the equation of continuity, the component mass balances are constructed and the energy balance considering with heat loss and momentum balance are established as follows. [Pg.630]

Energy balances are needed whenever temperature changes are important, as caused by reaction heating effects or by cooling and heating for temperature control. For example, such a balance is needed when the heat of reaction causes a change in reactor temperature. This is seen in the information flow diagram for a non-isothermal continuous reactor as shown in Fig. 1.19. [Pg.35]

The information flow diagram, for a non-isothermal, continuous-flow reactor, in Fig. 1.19, shown previously in Sec. 1.2.5, illustrates the close interlinking and highly interactive nature of the total mass balance, component mass balance, energy balance, rate equation, Arrhenius equation and flow effects F. This close interrelationship often brings about highly complex dynamic behaviour in chemical reactors. [Pg.132]

With each pass through the system, some water is vaporized, so that some makeup water is necessary. The amount of water evaporated can be determined by running an energy balance. As water is added the concentration of minerals and other substances in the water increases, since they are not removed by evaporation and every pound of makeup water adds some more. To counteract this build-up, some water must be continuously removed from the system. This is known as blowdown. As a rule of thumb, the blowdown is about 0.3% of the water being recirculated for each 10°F (5°C) of cooling that occurs within the tower. This assumes a solids concentration in the water of 4-5 times that in the makeup water. In places where water is scarce and hard, a deionization system may need to be installed.13... [Pg.187]

As in Section II,A, a set of steady-state mass and energy balances are formulated so that the parameters that must be evaluated can be identified. The annular flow patterns are included in Regime II, and the general equations formulated in Section II,A,2,a, require a detailed knowledge of the hydrodynamics of both continuous phases and droplet interactions. Three simplified cases were formulated, and the discussion in this section is based on Case I. The steady-state mass balances are... [Pg.40]

There are a variety of limiting forms of equation 8.0.3 that are appropriate for use with different types of reactors and different modes of operation. For stirred tanks the reactor contents are uniform in temperature and composition throughout, and it is possible to write the energy balance over the entire reactor. In the case of a batch reactor, only the first two terms need be retained. For continuous flow systems operating at steady state, the accumulation term disappears. For adiabatic operation in the absence of shaft work effects the energy transfer term is omitted. For the case of semibatch operation it may be necessary to retain all four terms. For tubular flow reactors neither the composition nor the temperature need be independent of position, and the energy balance must be written on a differential element of reactor volume. The resultant differential equation must then be solved in conjunction with the differential equation describing the material balance on the differential element. [Pg.254]

The ideal continuous stirred tank reactor is the easiest type of continuous flow reactor to analyze in design calculations because the temperature and composition of the reactor contents are homogeneous throughout the reactor volume. Consequently, material and energy balances can be written over the entire reactor and the outlet composition and temperature can be taken as representative of the reactor contents. In general the temperatures of the feed and effluent streams will not be equal, and it will be necessary to use both material and energy balances and the temperature-dependent form of the reaction rate expression to determine the conditions at which the reactor operates. [Pg.357]

The steady-state form of the energy balance for a continuous stirred tank reactor is given by equation 10.1.4. [Pg.357]

In this chapter, we first consider uses of batch reactors, and their advantages and disadvantages compared with continuous-flow reactors. After considering what the essential features of process design are, we then develop design or performance equations for both isothermal and nonisothermal operation. The latter requires the energy balance, in addition to the material balance. We continue with an example of optimal performance of a batch reactor, and conclude with a discussion of semibatch and semi-continuous operation. We restrict attention to simple systems, deferring treatment of complex systems to Chapter 18. [Pg.294]

Equations similar to 12.3-10 to -15 may be written in terms of internal energy, U, with Cv, the heat capacity at constant volume, replacing CP. For liquid-phase reactions, the difference between the two treatments is small. Since most single-phase reactions carried out in a BR involve liquids, we continue to write the energy balance in terms of H, but, if required, it can be written in terms of U. In the latter case, it is usually necessary to calculate AU from AH and Cv from CP, since AH and CP are the quantities listed in a database. Furthermore, regardless of which treatment is used, it may be necessary to take into account the dependence of AH (or AU) and CP (or C,) on T ... [Pg.299]

For a continuous-flow reactor, such as a CSTR, the energy balance is an enthalpy (H) balance, if we neglect any differences in kinetic and potential energy of the flowing stream, and any shaft work between inlet and outlet. However, in comparison with a BR, the balance must include the input and output of H by the flowing stream, in addition to any heat transfer to or from the control volume, and generation or loss of enthalpy by reaction within the control volume. Then the energy (enthalpy) equation in words is... [Pg.338]

Hirano, A., Hon-Nami, K., Kunito, S., Hada, M., and Ogushi, T. (1998). Temperature Effect on Continuous Gasification of Microalgal Biomass Theoretical Yield of Methanol Production and its Energy Balance, Catalysis Today 45. pp. 399-404. [Pg.141]

The example simulation THERMFF illustrates this method of using a dynamic process model to develop a feedforward control strategy. At the desired setpoint the process will be at steady-state. Therefore the steady-state form of the model is used to make the feedforward calculations. This example involves a continuous tank reactor with exothermic reaction and jacket cooling. It is assumed here that variations of inlet concentration and inlet temperature will disturb the reactor operation. As shown in the example description, the steady state material balance is used to calculate the required response of flowrate and the steady state energy balance is used to calculate the required variation in jacket temperature. This feedforward strategy results in perfect control of the simulated process, but limitations required on the jacket temperature lead to imperfections in the control. [Pg.77]


See other pages where Continuity energy balance is mentioned: [Pg.135]    [Pg.135]    [Pg.64]    [Pg.489]    [Pg.72]    [Pg.652]    [Pg.1264]    [Pg.2291]    [Pg.376]    [Pg.507]    [Pg.6]    [Pg.230]    [Pg.176]    [Pg.41]    [Pg.291]    [Pg.295]    [Pg.342]    [Pg.282]    [Pg.523]    [Pg.354]    [Pg.362]    [Pg.442]    [Pg.550]    [Pg.22]    [Pg.25]    [Pg.27]    [Pg.299]   
See also in sourсe #XX -- [ Pg.37 , Pg.50 , Pg.53 , Pg.80 , Pg.112 , Pg.133 , Pg.134 , Pg.175 , Pg.176 , Pg.203 , Pg.204 ]




SEARCH



Energy balance

Energy balancing

© 2024 chempedia.info