Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conjugation, full

In practice, it may not be possible to use conjugate prior and likelihood functions that result in analytical posterior distributions, or the distributions may be so complicated that the posterior cannot be calculated as a function of the entire parameter space. In either case, statistical inference can proceed only if random values of the parameters can be drawn from the full posterior distribution ... [Pg.326]

Step 1. From a histogram of the data, partition the data into N components, each roughly corresponding to a mode of the data distribution. This defines the Cj. Set the parameters for prior distributions on the 6 parameters that are conjugate to the likelihoods. For the normal distribution the priors are defined in Eq. (15), so the full prior for the n components is... [Pg.328]

The most notable chemistry of the biscylopen-tadienyls results from the aromaticity of the cyclopentadienyl rings. This is now far too extensively documented to be described in full but an outline of some of its manifestations is in Fig. 25.14. Ferrocene resists catalytic hydrogenation and does not undergo the typical reactions of conjugated dienes, such as the Diels-Alder reaction. Nor are direct nitration and halogenation possible because of oxidation to the ferricinium ion. However, Friedel-Crafts acylation as well as alkylation and metallation reactions, are readily effected. Indeed, electrophilic substitution of ferrocene occurs with such facility compared to, say, benzene (3 x 10 faster) that some explanation is called for. It has been suggested that. [Pg.1109]

Tire macrocyclic core of porphyrin systems 71 is highly conjugated and a number of effective resonance forms can be written. Tliere are nominally 22 TT-electrons but only 18 of these can be included in any one conjugative path (for a modern discussion on this topic, see references 98AGE177 and 99CEJ267). Chlorins (73, dihydroporphyrins), bacteriochlorins (74, tetra-hydroporphyrins), and isobacteriochlorins (75, tetrahydroporphyrins) also have full 18-7r delocalization available, though the number of possible resonance forms is reduced. [Pg.16]

This article, while not being intended to provide a full account of poly(arylene)s, emphasises the synthetic aspects. The synthesis of conjugated oligomers and polymers is, however, always part of an interdisciplinaiy approach with their active physical function being a key concern. In that sense the research being reviewed above concentrates on physical properties rather than playing with exotic chemical structures. [Pg.43]

Although the purpose here is not to give a full understanding of photoeleciron spectroscopy, it can be useful to discuss some of the specific features in a photoelectron spectrum which can be helpful for the understanding of the different examples discussed in this chapter. The main emphasis in the background to PES will be focused on the molecular solids aspect since this chapter deals with condensed conjugated systems. The interested reader can find a more in-depth discussion on the technique, relative to organic polymeric systems, in Refs. [4, 9, 10]. [Pg.71]

The flexibility of the substrate, the ease, and the low costs of fabrication of this DFB-polynter laser offer a very promising way to novel surface-emitting laser devices which take full advantage of the properties of conjugated polymers. [Pg.489]

The reported systems are always hydrogenated derivatives or compounds which exhibit full conjugation only in one mesomeric resonance structure, e.g. amides. [Pg.554]

The slow protonation rate of the conjugated anion of the sulphone (1st step) leads to the obtainment of a pseudo one-electron process. However, no self-protonatiori process exists in the presence of an excess of a proton donor of lower pKa than that of the electroactive substrate and Figure 6a, curve 2 shows evidence for a two-electron step. Full substitution on the a carbon, as in the case of phenyl 2-phenylbut-2-yl sulphone, does not allow one to observe any deactivation (Figure 6b, curve 1). It is worth mentioning that cathodic deactivations of acidic substrates in aprotic solvents are rather general in electrochemistry, e.g. aromatic ketones behave rather similarly, showing deprotonation of the substrate by the dianion of the carbonyl compound39. [Pg.1028]

Our results fit also with a previous investigation (9) on polyenes based on a version of the 2h-lp Cl scheme restricted to the virtual one-electron states generated by a minimal basis. In our case, however, the fragmentation of lines into satellites is much more pronounced. The reason lies in the size-consistency of the ADC[3] approach (as contrasted with the size-inconsistency of any truncated form of Cl (27d), in the full handling of the virtual space, and (10) in the inclusion of correlation corrections to the reference ground state, leading to (37) a net reduction of the quasi-particle band gap of conjugated polymers. [Pg.84]

Eq. (1) has potential application to other types of measurements of substituent effects besides those specifically considered in this paper e.g., nmr coupling constants and shifts for other nuclei, ir and uv spectral shifts and intensities. We caution (with emphasis) in these applications the needed use of data sets of high quality, both with respect to the precision of the measurement and substituents considered (i.e., a full complement of substituent o/ and Or properties must be encompassed for a meaningful correlation to be obtained). There is, of course, no requirement that all data sets will be uniquely fitted by eq. (1) using one of the four or scales of Table V. For example, the data for the ionization of the conjugate acids of pyridine-N-oxides (30), HjO, 25° is found to fit equally well the or(ba.) or Or scales (SD=. 14 /=. 072). The data (31) for the rates of alkaline ("OMe) cleavage of ArSnMea are not fitted to acceptable precision (fs >. 23) by any of the Or parameters. This data set is nevertheless indicated... [Pg.55]

The state of research on the two classes of acetylenic compounds described in this article, the cyclo[ ]carbons and tetraethynylethene derivatives, differs drastically. The synthesis of bulk quantities of a cyclocarbon remains a fascinating challenge in view of the expected instability of these compounds. These compounds would represent a fourth allotropic form of carbon, in addition to diamond, graphite, and the fullerenes. The full spectral characterization of macroscopic quantities of cyclo-C should provide a unique experimental calibration for the power of theoretical predictions dealing with the electronic and structural properties of conjugated n-chromophores of substantial size and number of heavy atoms. We believe that access to bulk cyclocarbon quantities will eventually be accomplished by controlled thermal or photochemical cycloreversion reactions of structurally defined, stable precursor molecules similar to those described in this review. [Pg.73]

The major breakthrough in the development of such RsE species was achieved several years ago by Sekiguchi et al., who reported the isolation and full identification of a homologous series of (t-Bu2MeSi)3E (E = Si, Ge, Sn) radicals without Jt-bond conjugation. " All of these radicals, kinetically and thermodynamically stabilized by the bulky electropositive silyl substituents, were prepared by the same very simple and straightforward method, which clearly danonstrated the generality of this synthetic approach. [Pg.81]

An important group of acylation reactions involves esters, in which case the leaving group is alkoxy or aryloxy. The self-condensation of esters is known as the Claisen condensation.216 Ethyl acetoacetate, for example, is prepared by Claisen condensation of ethyl acetate. All of the steps in the mechanism are reversible, and a full equivalent of base is needed to bring the reaction to completion. Ethyl acetoacetate is more acidic than any of the other species present and is converted to its conjugate base in the final step. The (3-ketoester product is obtained after neutralization. [Pg.149]

In general, phase I reactions, such as oxidation and ra-demethylation are delayed in the neonate but are fully operational at or above adult levels by 4-6 months of age in the full-term neonate [27a-30]. Conjugation pathways, such as glucuronidation, do not approach adult values until 3 or 4 years of age. Sulfation activity does appear to reach adult levels in early infancy. For drugs that are subject to metabolism by both pathways, such as acetaminophen, the efficient activity of the sulfation pathway allows infants and children to compensate for low glucuronidation ability... [Pg.668]

In our first ONIOM study, we showed the advantages of combining two molecular orbital (MO) methods in calculations of the chromophore itself. Compared to a full CASSCF treatment of a scaled chromophore (PSBN in Figure 2-3), a two-layer ONIOM (CASSCF CIS) calculation where only parts of the conjugated system (PSBN8 in Figure 2-3) is included in the model system, reproduces the... [Pg.33]

The fact that the 3,P-NMR signal of 183a can only be observed in pyridine-containing solution provides food for thought124). Viewed in conjugation with the idea that alkyl metaphosphates could form adducts such as 173 and 174 U9,120) as discussed above, formulation as a zwitterionic pyridine/metaphosphate adduct (188) seems reasonable. Similar adducts have also been found in the reaction of TPS with dinucleotides and trinucleoside diphosphate 126). In any case, the reactions of 183 or 188 are in full accord with the expected properties of a monomeric metaphosphate and its reactivity towards alcohols is far greater than that of all other reactive phosphorylation intermediates which can arise on reaction of TPS with oligonucleotides 126). [Pg.116]


See other pages where Conjugation, full is mentioned: [Pg.1197]    [Pg.51]    [Pg.1138]    [Pg.320]    [Pg.40]    [Pg.81]    [Pg.3]    [Pg.56]    [Pg.284]    [Pg.340]    [Pg.488]    [Pg.585]    [Pg.509]    [Pg.640]    [Pg.392]    [Pg.198]    [Pg.101]    [Pg.184]    [Pg.236]    [Pg.159]    [Pg.73]    [Pg.166]    [Pg.1138]    [Pg.62]    [Pg.5]    [Pg.31]    [Pg.144]    [Pg.601]    [Pg.71]    [Pg.419]    [Pg.19]    [Pg.76]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



© 2024 chempedia.info