Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conduction mechanism layers

An example of a layer structure mixed conductor is provided by the cathode material L CoC used in lithium batteries. In this solid the ionic conductivity component is due to the migration of Li+ ions between sheets of electronically conducting C0O2. The production of a successful mixed conductor by doping can be illustrated by the oxide Cei-jPxx02- Reduction of this solid produces oxygen vacancies and Pr3+ ions. The electronic conductivity mechanism in these oxides is believed to be by way of electron hopping between Pr4+ and Pr3+, and the ionic conductivity is essentially vacancy diffusion of O2- ions. [Pg.394]

Another conductivity mechanism could be suggested for LB films of this polymer with Ag+ cations. Such cations can accept or release electrons easily, so in the layer of such cations the conductivity could be caused by electron transitions between the ions with different degrees of oxidation. With tunneling microscopy an anomaly in the dl/dV(V) curves near zero bias was discovered for the LB films in Ag form with an odd number of layers there was a conductivity peak some 150-200 mV wide (Figure 7.4, Curves 1, 3) but no anomaly for these same films with an even number of layers (Figure 7.4, Curve 2). For LB films with an odd number of layers the ordered superstructure of the scale 11.5 x 11.5 x lO cm has been found in a conductivity dl/dV (x,y) measurement regime. The scale of such a structure corresponds to 3 x 2 surface reconstruction (Figure 7.5). [Pg.106]

There are five possible physical phases in the current path in which the current conduction mechanisms are different as illustrated in Figure 19. They are substrate, space charge layer, Helmholtz layer, surface oxide film, and electrolyte. The overall change in the applied potential due to a change of current density in the current path is the sum of the potential drops in these phases ... [Pg.178]

To design the optimal diffusion layer for a specific fuel cell system, it is important to be able to measure and understand all the parameters and characteristics that have a direct influence on the performance of the diffusion layers. This section will discuss in detail some of the most important properties that affect the diffusion layers, such as thickness, hydrophobicity and hydrophilicity, porosity and permeability (for both gas and liquids), electrical and thermal conductivity, mechanical properties, durability, and flow... [Pg.248]

Heteropolyacids are frequently used to modify proton-conducting composites,or they are just dispersed in inert matrixes.However, because the proton conduction mechanism of such hydrated salts is similar to those of hydrated polymeric sys-tems, these composites show qualitatively similar transport properties. The same is true for organically modified inorganic layered compounds such as titanium phosphate sulfophenylenphosphonate, the conductivity of which is dependent on the RH value, in a manner similar to that observed with Nafion. ... [Pg.434]

Solid state materials that can conduct electricity, are electrochemically of interest with a view to (a) the conduction mechanism, (b) the properties of the electrical double layer inside a solid electrolyte or semiconductor, adjacent to an interface with a metallic conductor or a liquid electrolyte, (c) charge-transfer processes at such interfaces, (d) their possible application in systems of practical interest, e.g. batteries, fuel cells, electrolysis cells, and (e) improvement of their operation in these applications by modifications of the electrode surface, etc. [Pg.277]

For a classical SEI electrode such as lithium, the surface films formed on it in most of the commonly used polar aprotic systems conduct Li ions, with a transference number (t+) close to unity. As stated earlier the surface films on active metals are reduction products of atmospheric and solution species by the active metal. Hence, these layers comprise ionic species that are inorganic and/or organic salts of the active metal. Conducting mechanisms in solid state ionics have been dealt with thoroughly in the past [36-44], Conductance in solid ionics is based on defects in the medium s lattice. Figure 8 illustrates the two common defects in ionic lattices interstitial (Frenkel-type) defects [37] and hole (Schottky-type) defects [38],... [Pg.305]

In this structure there are perovskite layers of ABO3 separated by AO rock salt layers. It is this layered structure that allows great flexibility in the oxygen stoichiometry of these materials. It is possible to incorporate excess oxygen (5 > 0) in the unusual form of interstitial oxygens, which provide an alternative to the vacancy-based conduction mechanism present in the perovskite and fluorite oxides, where the dopant-vacancy interactions can limit the observed conductivity. The mobility of the oxide ions in these materials occurs mainly through an interstitialcy mechanism in the aZ)-plane, although evidence of low Ea for the conduction in the c-direction via a Frenkel mechanism has also been reported. ... [Pg.1818]

Even within a monolayer there is the possibility of in-plane intermolecular interaction [12]. Adjacent 7t-systems can interact to form a 2D band or a pseudo-ID band structure within the layer, resulting in dispersion of the individual molecular orbital levels. It should be possible to isolate single-molecule effects by diluting the rectifier material in an inert matrix, e.g., a fatty acid. The current should then scale with the area fraction of active molecules within the matrix, if it is assumed that the rectifying current is the dominant conduction mechanism. [Pg.3320]

Tunneling in multilayered LB films is defect-mediated via trap sites within the conduction band of the molecules (Poole conduction), or by Schottky emission between widely spaced trap sites (Poole Frenkel conduction) in thicker samples [13]. With good molecular conductors the current from molecular conduction should dominate the small contribution from tunneling. However, the conduction mechanism between adjacent layers is not always obvious, due to the complexity of the interface structure. [Pg.3322]

Intercalation of electroactive polymers such as polyaniline and polypyrrole in mica-type layered silicates leads to metal-insulator nanocomposites. The conductivity of these nanocomposites in the form of films is highly anisotropic, with the in-plane conductivity 10 to 10 times higher than the conductivity in the direction perpendicular to the film. Conductive polymer/oxide bronze nanocomposites have been prepared by intercalating polythiophene in V2O5 layered phase, which is analogous to clays. °° Studies of these composites are expected not only to provide a fundamental understanding of the conduction mechanism in the polymers, but also to lead to diverse electrical and optical properties. [Pg.138]

One should pay attention to the processes taking place in the film after the phase transition, as well. Metallic type of conductance was not observed in our experiment after the phase transition. The conductance continued to increase. This effect could be explained by the presence of small amounts of vanadium pentoxide in the VO2 layer. Co-existence of different conduction mechanisms is possible in that case. [Pg.231]

Although several pathways can be held responsible for the charge decay in a film, we believe that the decay is dominated by drift through the bulk and that possible surface conduction mechanisms play a minor role. First, charges migrate relatively quickly into the upper layer of the bulk film and thus away from the surface. Second,... [Pg.166]

The perylene derivatives are n-t3rpe organic semiconductors. They are of great interest as components for organic electronics. In particular, films of perylenetetracarboxylic diimide derivative (PTCDI) are used as n-layers in heterojunctions of organic solar cells [1]. The industrial application of these materials is now limited by insufficient knowledge about conductivity mechanisms and their correlation with structural features of the films. [Pg.223]

The immobilization of an active species into a conducting polymer layer allows one to obtain active electrodes for the reduction of various organic halides. Polypyrrole containing viologen electrodes appear to be active for the reduction of alkyl dibromide [177] or hexachloroacetone [178], Cobalt-bipyridyl-polypyrrole films are active electrodes for the reduction of alkyl chloride [107], The mechanism of this reaction is similar to that observed in the homogeneous phase. This confinns one of the major interests of the modified conductive polymer electrodes, i,e. the possibility of performing catalytic reactions with smaller amounts of active catalyst in comparison to homogeneous catalysis, and then to avoid problems related to the separation of products from the solution which contains this catalyst. [Pg.492]


See other pages where Conduction mechanism layers is mentioned: [Pg.236]    [Pg.136]    [Pg.59]    [Pg.199]    [Pg.222]    [Pg.268]    [Pg.365]    [Pg.30]    [Pg.66]    [Pg.19]    [Pg.54]    [Pg.340]    [Pg.301]    [Pg.315]    [Pg.54]    [Pg.55]    [Pg.54]    [Pg.327]    [Pg.404]    [Pg.164]    [Pg.103]    [Pg.235]    [Pg.44]    [Pg.287]    [Pg.432]    [Pg.446]    [Pg.248]    [Pg.515]    [Pg.375]    [Pg.194]    [Pg.297]    [Pg.190]    [Pg.216]   
See also in sourсe #XX -- [ Pg.51 , Pg.52 , Pg.53 , Pg.54 , Pg.55 , Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.60 ]




SEARCH



Conductance mechanisms

Conducting Mechanisms

Conducting layers

Conductivity mechanism

© 2024 chempedia.info