Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conduction differential equation

An extension of this one-dimensional heterogeneous model is to consider intraparticle diffusion and temperature gradients, for which the lumped equations for the solid are replaced by second-order diffu-sion/conduction differential equations. Effectiveness factors can be used as applicable and discussed in previous parts of this section and in Sec. 7 of this Handbook (see also Froment and Bischoff, Chemical Reactor Analysis and Design, Wiley, 1990). [Pg.32]

General form of three-dimensional non-steady-state heat conduction differential equation in Cartesian coordinate system can be written as ... [Pg.978]

Example The differential equation of heat conduction in a moving fluid with velocity components is... [Pg.453]

Frequently, the transport coefficients, such as diffusion coefficient orthermal conductivity, depend on the dependent variable, concentration, or temperature, respectively. Then the differential equation might look Bke... [Pg.476]

Fourier s law is the fundamental differential equation for heat transfer by conduction ... [Pg.554]

When q is zero, Eq. (5-18) reduces to the famihar Laplace equation. The analytical solution of Eq. (10-18) as well as of Laplaces equation is possible for only a few boundary conditions and geometric shapes. Carslaw and Jaeger Conduction of Heat in Solids, Clarendon Press, Oxford, 1959) have presented a large number of analytical solutions of differential equations apphcable to heat-conduction problems. Generally, graphical or numerical finite-difference methods are most frequently used. Other numerical and relaxation methods may be found in the general references in the Introduction. The methods may also be extended to three-dimensional problems. [Pg.556]

Two-Dimensional Conduction The governing differential equation for two-dimensional transient conduction is... [Pg.557]

In the finite-difference appntach, the partial differential equation for the conduction of heat in solids is replaced by a set of algebraic equations of temperature differences between discrete points in the slab. Actually, the wall is divided into a number of individual layers, and for each, the energy conserva-tk>n equation is applied. This leads to a set of linear equations, which are explicitly or implicitly solved. This approach allows the calculation of the time evolution of temperatures in the wall, surface temperatures, and heat fluxes. The temporal and spatial resolution can be selected individually, although the computation time increa.ses linearly for high resolutions. The method easily can be expanded to the two- and three-dimensional cases by dividing the wall into individual elements rather than layers. [Pg.1067]

These three equations (11), (12), and (13) contain three unknown variables, ApJt kn and sr The rest are known quantities, provided the potential-dependent photocurrent (/ph) and the potential-dependent photoinduced microwave conductivity are measured simultaneously. The problem, which these equations describe, is therefore fully determined. This means that the interfacial rate constants kr and sr are accessible to combined photocurrent-photoinduced microwave conductivity measurements. The precondition, however is that an analytical function for the potential-dependent microwave conductivity (12) can be found. This is a challenge since the mathematical solution of the differential equations dominating charge carrier behavior in semiconductor interfaces is quite complex, but it could be obtained,9 17 as will be outlined below. In this way an important expectation with respect to microwave (photo)electro-chemistry, obtaining more insight into photoelectrochemical processes... [Pg.459]

The heat transfer model, energy and material balance equations plus boundary condition and initial conditions are shown in Figure 4. The energy balance partial differential equation (PDE) (Equation 10) assumes two dimensional axial conduction. Figure 5 illustrates the rectangular cross-section of the composite part. Convective boundary conditions are implemented at the interface between the walls and the polymer matrix. [Pg.261]

Transient Heat Conduction. Our next simulation might be used to model the transient temperature history in a slab of material placed suddenly in a heated press, as is frequently done in lamination processing. This is a classical problem with a well known closed solution it is governed by the much-studied differential equation (3T/3x) - q(3 T/3x ), where here a - (k/pc) is the thermal diffuslvity. This analysis is also identical to transient species diffusion or flow near a suddenly accelerated flat plate, if q is suitably interpreted (6). [Pg.274]

Equations of gas dynamics with heat conductivity. We are now interested in a complex problem in which the gas flow is moving under the heat conduction condition. In conformity with (l)-(7), the system of differential equations for the ideal gas in Lagrangian variables acquires the form... [Pg.541]

The laser we use in these experiments is an exclmer laser with a pulse width of approximately 20 nsec. In this time regime the laser heating can be treated using the differential equation for heat flow with a well defined value for the thermal diffusivity (k) and the thermal conductivity (K) (4). [Pg.239]

Chapter 4 eoncerns differential applications, which take place with respect to both time and position and which are normally formulated as partial differential equations. Applications include diffusion and conduction, tubular chemical reactors, differential mass transfer and shell and tube heat exchange. It is shown that such problems can be solved with relative ease, by utilising a finite-differencing solution technique in the simulation approach. [Pg.707]

The experiments were conducted at four different temperatures for each gas. At each temperature experiments were performed at different pressures. A total of 14 and 11 experiments were performed for methane and ethane respectively. Based on crystallization theory, and the two film theory for gas-liquid mass transfer Englezos et al. (1987) formulated five differential equations to describe the kinetics of hydrate formation in the vessel and the associate mass transfer rates. The governing ODEs are given next. [Pg.314]

The exponential decay predicted by the Onsager-Machlup theory, and by the Langevin and similar stochastic differential equations, is not consistent with the conductivity data in Fig. 8. This and the earlier figures show a constant value for >.(x) at larger times, rather than an exponential decay. It may be that if the data were extended to significantly larger time scales it would exhibit exponential decay of the predicted type. [Pg.79]

The heating of the liquid can be approximated by the transient conduction of heat to a slab of finite thickness 8, with the conventional differential equation,... [Pg.49]

Let us consider the semi-infinite (thermally thick) conduction problem for a constant temperature at the surface. The governing partial differential equation comes from the conservation of energy, and is described in standard heat transfer texts (e.g. Reference [13]) ... [Pg.176]

In the differential equations of the reverse combustion model, the reaction source term, dispersion coefficient, and the conductivity coefficient need to be defined. This is done based on data presented in Ref. [12]. At present, the model operates with a source term based on the combustion of coal particles. The source term is given by Eq. (5) ... [Pg.171]

The occurrence of kinetic instabilities as well as oscillatory and even chaotic temporal behavior of a catalytic reaction under steady-state flow conditions can be traced back to the nonlinear character of the differential equations describing the kinetics coupled to transport processes (diffusion and heat conductance). Studies with single crystal surfaces revealed the formation of a large wealth of concentration patterns of the adsorbates on mesoscopic (say pm) length scales which can be studied experimentally by suitable tools and theoretically within the framework of nonlinear dynamics. [31]... [Pg.66]

The equations describing the concentration and temperature within the catalyst particles and the reactor are usually non-linear coupled ordinary differential equations and have to be solved numerically. However, it is unusual for experimental data to be of sufficient precision and extent to justify the application of such sophisticated reactor models. Uncertainties in the knowledge of effective thermal conductivities and heat transfer between gas and solid make the calculation of temperature distribution in the catalyst bed susceptible to inaccuracies, particularly in view of the pronounced effect of temperature on reaction rate. A useful approach to the preliminary design of a non-isothermal fixed bed catalytic reactor is to assume that all the resistance to heat transfer is in a thin layer of gas near the tube wall. This is a fair approximation because radial temperature profiles in packed beds are parabolic with most of the resistance to heat transfer near the tube wall. With this assumption, a one-dimensional model, which becomes quite accurate for small diameter tubes, is satisfactory for the preliminary design of reactors. Provided the ratio of the catlayst particle radius to tube length is small, dispersion of mass in the longitudinal direction may also be neglected. Finally, if heat transfer between solid cmd gas phases is accounted for implicitly by the catalyst effectiveness factor, the mass and heat conservation equations for the reactor reduce to [eqn. (62)]... [Pg.186]

Mathematically, studies of diffusion often require solving a diffusion equation, which is a partial differential equation. The book of Crank (1975), The Mathematics of Diffusion, provides solutions to various diffusion problems. The book of Carslaw and Jaeger (1959), Conduction of Heat in Solids, provides solutions to various heat conduction problems. Because the heat conduction equation and the diffusion equation are mathematically identical, solutions to heat conduction problems can be adapted for diffusion problems. For even more complicated problems, including many geological problems, numerical solution using a computer is the only or best approach. The solutions are important and some will be discussed in detail, but the emphasis will be placed on the concepts, on how to transform a geological problem into a mathematical problem, how to study diffusion by experiments, and how to interpret experimental data. [Pg.175]

The differential equations of fluid dynamics express conservation of mass, conse rvation of momentum, conservation of energy and an equation of state. For an adiabatic reversible process, viscosity and heat conduction processes are absent and the equations are 2.1.1 to 2.1.13, inclusive... [Pg.700]

Another potential solution technique appropriate for the packed bed reactor model is the method of characteristics. This procedure is suitable for hyperbolic partial differential equations of the form obtained from the energy balance for the gas and catalyst and the mass balances if axial dispersion is neglected and if the radial dimension is first discretized by a technique such as orthogonal collocation. The thermal well energy balance would still require a numerical technique that is not limited to hyperbolic systems since axial conduction in the well is expected to be significant. [Pg.131]


See other pages where Conduction differential equation is mentioned: [Pg.569]    [Pg.3]    [Pg.109]    [Pg.316]    [Pg.749]    [Pg.779]    [Pg.14]    [Pg.190]    [Pg.504]    [Pg.102]    [Pg.314]    [Pg.20]    [Pg.50]    [Pg.517]    [Pg.159]    [Pg.164]    [Pg.221]    [Pg.749]    [Pg.779]   
See also in sourсe #XX -- [ Pg.22 , Pg.24 ]




SEARCH



Conductance differential

Differential Equation of Heat Conduction

Heat conduction differential equation

Heat conduction equation differential equations

Partial differential equations heat conduction problem

© 2024 chempedia.info