Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conducting matrix polymer

At an early stage it was recognised [12] that ICPs display a temperature dependence of thermopower that identifies them as metals (according to Kaiser with similarities to amorphous metals). It was therefore interesting for us to know what the thermopower of blends of non-conductive matrix polymers with PAni was like. (See Section 7.)... [Pg.618]

Because of the aqueous solubiUty of polyelectrolyte precursor polymers, another method of polymer blend formation is possible. The precursor polymer is co-dissolved with a water-soluble matrix polymer, and films of the blend are cast. With heating, the fully conjugated conducting polymer is generated to form the composite film. This technique has been used for poly(arylene vinylenes) with a variety of water-soluble matrix polymers, including polyacrjiamide, poly(ethylene oxide), polyvinylpyrroHdinone, methylceUulose, and hydroxypropylceUulose (139—141). These blends generally exhibit phase-separated morphologies. [Pg.39]

Electrochemical polymeriza tion of heterocycles is useful in the preparation of conducting composite materials. One technique employed involves the electro-polymerization of pyrrole into a swollen polymer previously deposited on the electrode surface (148—153). This method allows variation of the physical properties of the material by control of the amount of conducting polymer incorporated into the matrix film. If the matrix polymer is an ionomer such as Nation (154—158) it contributes the dopant ion for the oxidized conducting polymer and acts as an effective medium for ion transport during electrochemical switching of the material. [Pg.39]

Conducting polymer composites have also been formed by co-electrodeposition of matrix polymer during electrochemical polymerization. Because both components of the composite are deposited simultaneously, a homogenous film is obtained. This technique has been utilized for both neutral thermoplastics such as poly(vinyl chloride) (159), as well as for a large variety of polyelectrolytes (64—68, 159—165). When the matrix polymer is a polyelectrolyte, it serves as the dopant species for the conducting polymer, so there is an intimate mixing of the polymer chains and the system can be appropriately termed a molecular composite. [Pg.39]

A variety of organoboron polymer electrolytes were successfully prepared by hydroboration polymerization or dehydrocoupling polymerization. Investigations of the ion conductive properties of these polymers are summarized in Table 7. From this systematic study using defined organoboron polymers, it was clearly demonstrated that incorporation of organoboron anion receptors or lithium borate structures are fruitful approaches to improve the lithium transference number of an ion conductive matrix. [Pg.210]

Polymeric conducting systems were also prepared by in situ polymerization of vinyl monomers in ionic liquids [22], with a conductivity of 1 mS/cm. A conductive polymer electrolytes were also prepared by polymerization in liquid EMIm(HF)nF leading to a composite poly(2-hydroxyethyl methacrylate)-EMIm(HF)nF. Recently, polymer electrolytes were prepared in the form of thin foils, by incorporating ionic liquids in a polymer matrix [13-15], Conductivities of polymer-IL or polymer-IL-solvent systems are collected in Table 4. [Pg.102]

Properties of peroxide cross-linked polyethylene foams manufactured by a nitrogen solution process, were examined for thermal conductivity, cellular structure and matrix polymer morphology. Theoretical models were used to determine the relative contributions of each heat transfer mechanism to the total thermal conductivity. Thermal radiation was found to contribute some 22-34% of the total and this was related to the foam s mean cell structure and the presence of any carbon black filler. There was no clear trend of thermal conductivity with density, but mainly by cell size. 27 refs. [Pg.60]

Polymer hypothesis Stereoregulation of polymer structure Organization of polymer chains Synthesis on a solid matrix Polymer structure and control at interfaces Conductive polymers... [Pg.747]

Transition metal compounds, such as organic macrocycles, are known to be good electrocatalysts for oxygen reduction. Furthermore, they are inactive for alcohol oxidation. Different phthalocyanines and porphyrins of iron and cobalt were thus dispersed in an electron-conducting polymer (polyaniline, polypyrrole) acting as a conducting matrix, either in the form of a tetrasulfonated counter anion or linked to... [Pg.14]

An irradiation-induced expansion could conceivably be caused by the ions, formed as precursors of the radicals, or by thermalized electrons trapped within the polymer. Irradiation induces electrical conductivity in polymers, and this conductivity decays after irradiation is ceased (4, 5). The decay process is accelerated by increased temperature or plasticity of the specimen, presumably by facilitating leakage of the trapped electrons or ions to ground. One might speculate that the sample expands upon irradiation because of the local mutual electrical repulsions of like charges which are trapped in the polymer matrix, and that both increased temperature and plasticizer content diminish this expansion because of charge leakage out of the specimen. It is difficult to prove or disprove this hypothesis. [Pg.109]

In order to estimate the theoretical upper bounds for the electrical conductivities of polymer nanotube composites, equation (15.1) was used to calculate conductivity values for model composites based on both SWNT and MWNT. The values are included in Table 15.2 together with the electrical conductivities of individual CNTs as reported in the literature. Although arc-synthesized MWNTs are likely to possess higher conductivities than CVD-grown ones, no distinction is made in the present analysis between the two types due to the unavailability of reliable data. An electrical conductivity of IE-9 S/m is taken to represent the conductivity of a typical polymer matrix. [Pg.430]

Monomer II is also a polymerizable IL composed of quatemized imidazoliimi salt, as shown in Figure 29.1. This monomer is liquid at room temperature and shows a Tg only at —70°C. Its high ionic conductivity of about 10 S cm at room temperature reflects a low Tg. Although the ionic conductivity of this monomer decreased after polymerization as in the case of monomer I, it was considerably improved by the addition of a small amount of LiTFSI. Figure 29.3 shows the effect of LiTFSI concentration on the ionic conductivity and lithium transference number ( Li ) for polymer II. The bulk ionic conductivity of polymer II was 10 S cm at 50°C. When LiTFSI was added to polymer 11, the ionic conductivity increased up to 10 S cm After that, the ionic conductivity of polymer II decreased gradually with the increasing LiTFSI concentration. On the other hand, when the LiTFSI concentration was 100 mol%, the of this system exceeded 0.5. Because of the fixed imidazolium cations on the polymer chain, mobile anion species exist more than cation species in the polymer matrix at this concentration. Since the TFSI anions form the IL domain with the imidazolium cation, the anion can supply a successive ion conduction path for the lithium caiton. Such behavior is not observed in monomeric IL systems, and is understood to be due to the concentrated charge domains created by the polymerization. [Pg.349]

Polymers having a ZIL unit should provide an excellent ion conductive matrix for added target ions alone, as stated in Chapter 20.3. Accordingly poly(ZlL)s were synthesized, and their ionic conductivity and thermal properties were studied. P6 showed the lowest Tg, both before and after addition of salt. This matrix proved to have higher ionic conductivity than the other polymers. Figure 30.5 shows the... [Pg.358]

Since the volume fraction (f) of the conducting network near threshold is small (the percolation threshold is at 1% PANI, or less), the conductivity increases smoothly and continuously over many orders of magnitude as the concentration of conducting polymer in the blend increases above threshold [61,279-281], The low percolation threshold and the continuous increase in o-(f) above threshold are particularly important. As a result of this combination, conducting polyblends can be reproducibly fabricated with controlled levels of electrical conductivity while retaining the desired mechanical properties of the matrix polymer (such as polyolefins, polymethylmethacrylate, polyesters, ABS, polyvinylbuteral, etc,) [282,283],... [Pg.179]


See other pages where Conducting matrix polymer is mentioned: [Pg.123]    [Pg.144]    [Pg.497]    [Pg.123]    [Pg.144]    [Pg.497]    [Pg.39]    [Pg.176]    [Pg.83]    [Pg.449]    [Pg.182]    [Pg.202]    [Pg.41]    [Pg.28]    [Pg.3]    [Pg.39]    [Pg.39]    [Pg.32]    [Pg.33]    [Pg.358]    [Pg.247]    [Pg.157]    [Pg.120]    [Pg.253]    [Pg.154]    [Pg.159]    [Pg.180]    [Pg.374]    [Pg.381]    [Pg.83]    [Pg.348]    [Pg.352]    [Pg.356]    [Pg.278]    [Pg.1822]    [Pg.1822]   


SEARCH



Assembly of Conducting Polymers in Host Matrices

Conducting matrix

Conductive polymer matrices

Polymer matrices

Thermal conductivity polymer matrix

© 2024 chempedia.info