Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condenser, electrochemical

Shono and coworkers have shown that aliphatic aldehydes may be condensed electrochemically (equation 11). Current efficiency for the reaction in equation (11) was found to be 0.96 x 10 %. [Pg.138]

Arninobenzoyl-L-glutarnic acid (12) is obtained by condensation of -nitrobenzoyl chloride [122-04-3] (18) with L-glutamic acid [56-86-0] (19) under Schotten-Baumann conditions. This is followed by reduction of the nitro group with either sodium hydrogen sulfide (29) or by electrochemical methods (30). [Pg.38]

Corrosion of. power-station condenser tubes by polluted, waters has been particularly troubles ome in Japan anil efforts have been made to,study the problem by, electrochemical methods and by exposing model condensers at a variety of bower station sites ., Improved results have been reported, using tin. brasses , or special, tin bronzes. . Pretreatment with sodium dimethyldithiOcarbamate is reported to give protective films that will withstand the action of polluted waters , though the method would be economic only in special circurtistapcies., , , . ... [Pg.698]

In principle, cathodic protection can be used for a variety of applications where a metal is immersed in an aqueous solution of an electrolyte, which can range from relatively pure water to soils and to dilute solutions of acids. Whether the method is applicable will depend on many factors and, in particular, economics — protection of steel immersed in a highly acid solution is theoretically feasible but too costly to be practicable. It should be emphasised that as the method is electrochemical both the structure to be protected and the anode used for protection must be in both metallic and electrolytic contact. Cathodic protection cannot therefore be applied for controlling atmospheric corrosion, since it is not feasible to immerse an anode in a thin condensed film of moisture or in droplets of rain water. [Pg.199]

Development of this technique by CAPCIS (UMIST, Manchester, UK), has led to an instrument system utilising several electrochemical techniques (d.c. and a.c.) from a multi-element probe. Electrochemical noise was able to operate in an acid-condensing environment with small amounts of liquid The combination of data using several electrochemical techniques enabled identification of the corrosion mechanism in this application. [Pg.1140]

Measurement of the differential capacitance C = d /dE of the electrode/solution interface as a function of the electrode potential E results in a curve representing the influence of E on the value of C. The curves show an absolute minimum at E indicating a maximum in the effective thickness of the double layer as assumed in the simple model of a condenser [39Fru]. C is related to the electrocapillary curve and the surface tension according to C = d y/dE. Certain conditions have to be met in order to allow the measured capacity of the electrochemical double to be identified with the differential capacity (see [69Per]). In dilute electrolyte solutions this is generally the case. [Pg.183]

The Volta potential is defined as the difference between the electrostatic outer potentials of two condensed phases in equilibrium. The measurement of this and related quantities is performed using a system of voltaic cells. This technique, which in some applications is called the surface potential method, is one of the oldest but still frequently used experimental methods for studying phenomena at electrified solid and hquid surfaces and interfaces. The difficulty with the method, which in fact is common to most electrochemical methods, is lack of molecular specificity. However, combined with modem surface-sensitive methods such as spectroscopy, it can provide important physicochemical information. Even without such complementary molecular information, the voltaic cell method is still the source of much basic electrochemical data. [Pg.13]

These processes either lead to the formation of a new solid phase or the original solid phase grows or disappears. In addition to the electrochemical laws discussed earlier, this group of phenomena must be explained on the basis of the theory of new phase formation (crystallization, condensation, etc.). [Pg.379]

As mentioned previously, this can be attributed in part to the lack of structure-sensitive techniques that can operate in the presence of a condensed phase. Ultrahigh-vacuum (UHV) surface spectroscopic techniques such as low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and others have been applied to the study of electrochemical interfaces, and a wealth of information has emerged from these ex situ studies on well-defined electrode surfaces.15"17 However, the fact that these techniques require the use of UHV precludes their use for in situ studies of the electrode/solution interface. In addition, transfer of the electrode from the electrolytic medium into UHV introduces the very serious question of whether the nature of the surface examined ex situ has the same structure as the surface in contact with the electrolyte and under potential control. Furthermore, any information on the solution side of the interface is, of necessity, lost. [Pg.266]

UHV techniques are usually classified in terms of the electron/photon method, as is shown in Table 2.3 which lists the common electron bombardment and emission techniques that have been employed in electrochemical studies. A detailed description of UHV surface analysis techniques is beyond the scope of this book there are many excellent reference texts that can be consulted for this purpose (see further reading list). It is sufficient to note that methods involving electron bombardment or emission are inherently surface-sensitive as a result of the low pathlength, or escape depth, of electrons in condensed media. In addition, Table 2.3 briefly describes the type of information each method provides. [Pg.225]

A different view of the OMT process is that the molecule, M, is fully reduced, M , or oxidized, M+, during the tunneling process [25, 26, 92-95]. In this picture a fully relaxed ion is formed in the junction. The absorption of a phonon (the creation of a vibrational excitation) then induces the ion to decay back to the neutral molecule with emission (or absorption) of an electron - which then completes tunneling through the barrier. For simplicity, the reduction case will be discussed in detail however, the oxidation arguments are similar. A transition of the type M + e —> M is conventionally described as formation of an electron affinity level. The most commonly used measure of condensed-phase electron affinity is the halfwave reduction potential measured in non-aqueous solvents, Ey2. Often these values are tabulated relative to the saturated calomel electrode (SCE). In order to correlate OMTS data with electrochemical potentials, we need them referenced to an electron in the vacuum state. That is, we need the potential for the half reaction ... [Pg.204]

The first fire retardant polyester containing a reactive fire retardant monomer was introduced by the Hooker Electrochemical Corporation in the early 1950 s containing chlorendic acid as the reactive monomer (6). This pioneering development rapidly led to the introduction of variety of reactive halogen and phosphorus containing monomers, such as tetrabromophthalic anhydride, chlorostyrene and tetrabromobisphenol A, which found application in a wide variety of condensation polymer systems. [Pg.90]


See other pages where Condenser, electrochemical is mentioned: [Pg.2409]    [Pg.453]    [Pg.147]    [Pg.344]    [Pg.893]    [Pg.2357]    [Pg.231]    [Pg.709]    [Pg.1036]    [Pg.1202]    [Pg.555]    [Pg.89]    [Pg.11]    [Pg.100]    [Pg.154]    [Pg.624]    [Pg.69]    [Pg.412]    [Pg.651]    [Pg.1036]    [Pg.290]    [Pg.443]    [Pg.33]    [Pg.63]    [Pg.91]    [Pg.165]    [Pg.251]    [Pg.166]    [Pg.149]    [Pg.292]    [Pg.178]    [Pg.16]   


SEARCH



Capacitor, electrochemical Condensers

Condenser, electrochemical batteries

© 2024 chempedia.info