Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensation azeotropic

SYNTHESIS Aromatic polyetherimides are usually prepared from (a) bisphenoxide salts and aromatic dinitrobisimides via nucleophilic nitro-displacement reactions(b) two-step polycondensation of aromatic diamines and ether-dianhydrides in a polar aprotic solvent, followed by thermalor chemical cyclodehydration of the polyamic acid precursors and (c) one-step, high temperature solution polymerization of aromatic diamines and ether-dianhydrides in a phenolic solvent, removing water of condensation azeotropically. - Certain polyetherimides can also be s)mthesized via direct melt polymerization/ ... [Pg.471]

Complications increase when there is an azeotrope between solvent and water which does not separate on condensation. Azeotropic mixtures of solvent and water can be separated by operating the distillation under high pressure. Under these circumstances the azeotropic composition changes and increases in water content. Separation can be achieved providing specialised equipment is used and measures are taken to ensure safe handling of the solvent at high pressure. [Pg.149]

In the first class, azeotropic distillation, the extraneous mass-separating agent is relatively volatile and is known as an entrainer. This entrainer forms either a low-boiling binary azeotrope with one of the keys or, more often, a ternary azeotrope containing both keys. The latter kind of operation is feasible only if condensation of the overhead vapor results in two liquid phases, one of which contains the bulk of one of the key components and the other contains the bulk of the entrainer. A t3q)ical scheme is shown in Fig. 3.10. The mixture (A -I- B) is fed to the column, and relatively pure A is taken from the column bottoms. A ternary azeotrope distilled overhead is condensed and separated into two liquid layers in the decanter. One layer contains a mixture of A -I- entrainer which is returned as reflux. The other layer contains relatively pure B. If the B layer contains a significant amount of entrainer, then this layer may need to be fed to an additional column to separate and recycle the entrainer and produce pure B. [Pg.81]

Although acetic acid and water are not beheved to form an azeotrope, acetic acid is hard to separate from aqueous mixtures. Because a number of common hydrocarbons such as heptane or isooctane form azeotropes with formic acid, one of these hydrocarbons can be added to the reactor oxidate permitting separation of formic acid. Water is decanted in a separator from the condensate. Much greater quantities of formic acid are produced from naphtha than from butane, hence formic acid recovery is more extensive in such plants. Through judicious recycling of the less desirable oxygenates, nearly all major impurities can be oxidized to acetic acid. Final acetic acid purification follows much the same treatments as are used in acetaldehyde oxidation. Acid quahty equivalent to the best analytical grade can be produced in tank car quantities without difficulties. [Pg.68]

Anhydrous hydrazine, required for propellant appHcations and some chemical syntheses, is made by breaking the hydrazine—water azeotrope with aniline. The bottom stream from the hydrate column (Fig. 4) is fed along with aniline to the azeotrope column. The overhead aniline—water vapor condenses and phase separates. The lower aniline layer returns to the column as reflux. The water layer, contaminated with a small amount of aniline and hydrazine, flows to a biological treatment pond. The bottoms from the azeotrope column consist of aniline and hydrazine. These are separated in the final hydrazine column to give an anhydrous overhead the aniline from the bottom is recycled to the azeotrope column. [Pg.282]

Processes to produce boric acid esters are based on the azeotropic removal of water from a mixture of the appropriate alcohol, phenol, or glycol, and boric acid. A suitable hydrocarbon azeotroping agent is used to help remove the water. The water is removed continuously by using a condenser that allows continuous return of the solvent to the reaction vessel. Eor some borate esters, such as the glycol borates, distillation can result in decomposition. [Pg.215]

FIG. 13-7 Separation operations related to distillation, (a) Flush vaporization or partial condensation, (h) Absorption, (c) Rectifier, (d) Stripping, (e) Reboded stripping, (f ) Reboiled absorption, (g) Refluxed stripping, (h) Extractive distillation. ( ) Azeotropic distillation. [Pg.1247]

FIG. 13-12 Liq iiid boiling points and vapor condensation temperatures for maximum-boiling azeotrope mixtures of chloroform and acetone at 101.3 kPa (1 atm) total pressure. [Pg.1254]

In distillation operations, separation results from differences in vapor-and liquid-phase compositions arising from the partial vaporization of a hquid mixture or the partial condensation of a vapor mixture. The vapor phase becomes enriched in the more volatile components while the hquid phase is depleted of those same components. In many situations, however, the change in composition between the vapor and liquid phases in equihbrium becomes small (so-called pinched condition ), and a large number of successive partial vaporizations and partial condensations is required to achieve the desired separation. Alternatively, the vapor and liquid phases may have identical compositions, because of the formation of an azeotrope, and no separation by simple distillation is possible. [Pg.1292]

Consider azeotropic distillation to dehydrate ethanol with benzene. Initial steady-state conditions are as shown in Fig. 13-108. The overhead vapor is condensed and cooled to 298 K to form two hquid phases that are separated in the decanter. The organic-rich phase is returned to the top tray as reflux together with a portion of the water-rich phase and makeup benzene. The other portion of the water-rich phase is sent to a stripper to recover organic compounds. Ordinarily, vapor from that stripper is condensed and recycled to the decanter, but that coupling is ignored here. [Pg.1343]

A colourless, odourless, neutral liquid at room temperature with a high dielectric constant. The amount of water present can be determined directly by Karl Fischer titration GLC and NMR have been used to detect unreacted propionic acid. Commercial material of high quality is available, probably from the condensation of anhydrous methylamine with 50% excess of propionic acid. Rapid heating to 120-140° with stirring favours the reaction by removing water either directly or as the ternary xylene azeotrope. The quality of the distillate improves during the distn. [Pg.298]

The most versatile method for preparing enamines involves the condensation of aldehydes and ketones with secondary amines [Eq. (1)]. Mannich and Davidsen (/) discovered that the reaction of secondary amines with aldehydes in the presence of potassium carbonate and at temperatures near 0° gave enamines, while calcium oxide and elevated temperatures were required to cause a reaction between ketones and secondary amines, although usually in poor yield. The introduction by Herr and Heyl 2-4) of the removal of the water produced in the condensation by azeotropic distillation with benzene made possible the facile preparation of enamines from ketones and disubstituted aldehydes. [Pg.56]

The synthetic utility of enamines presupposes their general accessibility. In most cases, ketones are readily converted to enamines by condensation of the carbonyl compound with a secondary amine such as pyrrolidine, morpholine, or piperidine and azeotropic removal of water with a solvent such as benzene (3-19). [Pg.315]

While enamines can usually be obtained directly from ketones and secondary amines their formation by an indirect route may bo advantageous. The previously mentioned condensation of rnethyl ketones during azeotropic enamine formation has prompted the alklyation (J) or acylation and reduction (59) of Schiff s bases. A parallel method uses the formation and desulfurization of N-acylthiazolines followed by hydride reduetion (60,61). [Pg.321]

The long known catalyses of some ketone condensation reactions by secondary amines, can be postulated to have their basis in the reactions of enamine intermediates with ketones. The unsuitability of methyl ketones for azeotropic enamine formation is based on this phenomenon. Recent studies in cyclization reactions have added further support to this concept (354). [Pg.378]

Figure 7-6. The PPG Industries Inc. Chloroethylene process for producing perchloro- and trichloroethylene (1) reactor, (2) graphite exchanger, (3) refrigerated condenser, (4) scrubber, (5) phase separation of perchlor from trichlor, (6, 7) azeotropic distillation, (8) distillation train, (9-11) crude trichlor separation—purification, (10-16) crude perchlor separation—purification. Figure 7-6. The PPG Industries Inc. Chloroethylene process for producing perchloro- and trichloroethylene (1) reactor, (2) graphite exchanger, (3) refrigerated condenser, (4) scrubber, (5) phase separation of perchlor from trichlor, (6, 7) azeotropic distillation, (8) distillation train, (9-11) crude trichlor separation—purification, (10-16) crude perchlor separation—purification.

See other pages where Condensation azeotropic is mentioned: [Pg.847]    [Pg.75]    [Pg.99]    [Pg.123]    [Pg.457]    [Pg.87]    [Pg.400]    [Pg.108]    [Pg.451]    [Pg.483]    [Pg.483]    [Pg.85]    [Pg.197]    [Pg.198]    [Pg.198]    [Pg.376]    [Pg.409]    [Pg.1124]    [Pg.1311]    [Pg.1312]    [Pg.1313]    [Pg.1319]    [Pg.4]    [Pg.702]    [Pg.52]    [Pg.53]    [Pg.53]    [Pg.212]    [Pg.239]    [Pg.57]    [Pg.316]    [Pg.171]    [Pg.903]   
See also in sourсe #XX -- [ Pg.243 , Pg.454 , Pg.455 ]

See also in sourсe #XX -- [ Pg.182 , Pg.324 ]




SEARCH



Azeotropic dehydrative condensation

© 2024 chempedia.info