Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reactions concerted mechanism

The mechanism of tetrahydroquinoline formation by the Povarov reaction has been debated. A stepwise mechanism involves ionic intermediate 13, followed by an intramolecular electrophilic substitution. A concerted hetero Diels-Alder reaction was proposed where a concerted asynchronous transition state 14 was suggested. [Pg.387]

AMI calculations of the addition of o-quinodimethanes with Ceo show that the mechanism is concerted. The Diels-Alder reaction between fullerene (Ceo) and Danishefsky s diene proceeds via a stepwise mechanism involving a single-electron transfer from the diene to the fullerene. ... [Pg.519]

Honk et al. concluded that this FMO model imply increased asynchronicity in the bond-making processes, and if first-order effects (electrostatic interactions) were also considered, a two-step mechanisms, with cationic intermediates become possible in some cases. It was stated that the model proposed here shows that the phenomena generally observed on catalysis can be explained by the concerted mechanism, and allows predictions of the effect of Lewis acid on the rates, regioselectivity, and stereoselectivity of all concerted cycloadditions, including those of ketenes, 1,3-dipoles, and Diels-Alder reactions with inverse electron-demand [2],... [Pg.305]

For most Diels-Alder reactions a concerted mechanism as described above, is generally accepted. In some cases, the kinetic data may suggest the intermediacy of a diradical intermediate 18 ... [Pg.91]

Like the Diels-Alder reaction discussed in Sections 14.4 and 14.5, the Claisen rearrangement reaction takes place through a pericyclic mechanism in which a concerted reorganization of bonding electrons occurs through a six-membered, cyclic transition state. The 6-allyl-2,4-cyclohexadienone intermediate then isomerizes to o-allylpbenol (Figure 18.1). [Pg.660]

Most Diels-Alder reactions, particularly the thermal ones and those involving apolar dienes and dienophiles, are described by a concerted mechanism [17]. The reaction between 1,3-butadiene and ethene is a prototype of concerted synchronous reactions that have been investigated both experimentally and theoretically [18]. A concerted unsymmetrical transition state has been invoked to justify the stereochemistry of AICI3-catalyzed cycloadditions of alkylcyclohexenones with methyl-butadienes [12]. The high syn stereospecificity of the reaction, the low solvent effect on the reaction rate, and the large negative values of both activation entropy and activation volume comprise the chemical evidence usually given in favor of a pericyclic Diels-Alder reaction. [Pg.5]

There are, broadly speaking, three possible mechanisms that have been considered for the uncatalyzed Diels-Alder reaction. In mechanism a there is a cyclic six-centered transition state and no intermediate. The reaction is concerted and occurs in one step. In mechanism b, one end of the diene fastens to one end of the dienophile first to give a diradical, and then, in a second step, the other ends become fastened. A diradical formed in this manner must be a singlet that is, the... [Pg.1066]

Lewis acids such as zinc chloride, boron trifluoride, tin tetrachloride, aluminum chloride, methylaluminum dichloride, and diethylaluminum chloride catalyze Diels-Alder reactions.22 The catalytic effect is the result of coordination of the Lewis acid with the dienophile. The complexed dienophile is more electrophilic and more reactive toward electron-rich dienes. The mechanism of the addition is believed to be concerted and enhanced regio- and stereoselectivity is often observed.23... [Pg.481]

The spiro dimer of a-tocopherol (9, see also Fig. 6.4) is formed as mixture of two diastereomers by dimerization of the o-QM 3 in a hetero-Diels-Alder reaction with inverse electron demand. Both isomers are linked by a fluxion process (Fig. 6.22), which was proven by NMR spectroscopy.53 The detailed mechanism of the interconversion, which is catalyzed by acids, was proposed to be either stepwise or concerted.53-55... [Pg.187]

Chen, J., Houk, K. N., Foote, C. S., 1998, Theoretical Study of the Concerted and Stepwise Mechanisms of Triazolinedione Diels-Alder Reactions , J. Am. Chem. Soc., 120, 12303. [Pg.283]

In addition to conventional ab initio methods, techniques based on the density functional theory (DFT) have also been used to study the Diels-Alder reaction between butadiene and ethylene97-99. With these kinds of methods, a concerted mechanism through a symmetric transition state is also predicted. Several kinds of density functionals have been used. The simplest one is based on the Local Density Approach (LDA), in which all the potentials depend only on the density. More sophisticated functionals include a dependence on the gradient of the density, such as that of Becke, Lee, Yang and Parr (BLYP). [Pg.19]

The observation that the transition state volumes in many Diels-Alder reactions are product-like, has been regarded as an indication of a concerted mechanism. In order to test this hypothesis and to gain further insight into the often more complex mechanism of Diels-Alder reactions, the effect of pressure on competing [4 + 2] and [2 + 2] or [4 + 4] cycloadditions has been investigated. In competitive reactions the difference between the activation volumes, and hence the transition state volumes, is derived directly from the pressure dependence of the product ratio, [4 + 2]/[2 + 2]p = [4 + 2]/[2 + 2]p=i exp —< AF (p — 1)/RT. All [2 + 2] or [4 + 4] cycloadditions listed in Tables 3 and 4 doubtlessly occur in two steps via diradical intermediates and can therefore be used as internal standards of activation volumes expected for stepwise processes. Thus, a relatively simple measurement of the pressure dependence of the product ratio can give important information about the mechanism of Diels-Alder reactions. [Pg.558]

These experimental secondary deuterium KIEs observed in Diels-Alder reactions have been compared with the respective theoretical KIEs for the stepwise mechanism involving a diradical intermediate (equation 88a) and for concerted synchronous and asynchronous mechanisms (equation 88b) for the Diels-Alder reaction of butadiene with ethylene207. [Pg.853]

The well-known Diels-Alder reaction [95,104-106] is a standard method for forming substituted cyclohexenes through the thermally allowed 4s + 2s cycloaddition of alkenes and dienes. In particular, the reaction between ethene and 1,3-butadiene to yield cyclohexene is the prototype of a Diels-Alder reaction (Scheme 28.4). It is now well recognized that this reaction takes place via a synchronous and concerted mechanism through an aromatic boatlike TS [105]. [Pg.427]

Af-Acyliminium ions are known to serve as electron-deficient 4n components and undergo [4+2] cycloaddition with alkenes and alkynes.15 The reaction has been utilized as a useftil method for the construction of heterocycles and acyclic amino alcohols. The reaction can be explained in terms of an inverse electron demand Diels-Alder type process that involves an electron-deficient hetero-diene with an electron-rich dienophile. Af-Acyliminium ions generated by the cation pool method were also found to undergo [4+2] cycloaddition reaction to give adduct 7 as shown in Scheme 7.16 The reaction with an aliphatic olefin seems to proceed by a concerted mechanism, whereas the reaction with styrene derivatives seems to proceed by a stepwise mechanism. In the latter case, significant amounts of polymeric products were obtained as byproducts. The formation of polymeric byproducts can be suppressed by micromixing. [Pg.205]

Mechanistic and theoretical studies of the Diels-Alder reaction have resulted in the characterization of this reaction as a concerted, although not necessarily synchronous, single-step process28-31 45. The parent reaction, the addition of 1,3-butadiene to ethylene yielding cyclohexene, has been the subject of an ongoing mechanistic debate. Experimental results supported a concerted mechanism, whereas results from calculations seemed to be dependent on the method used. Semi-empirical calculations predicted a stepwise mechanism, whereas ab initio calculations were in favor of a concerted pathway. At the end of the 80s experimental and theoretical evidence converged on the synchronous mechanism29-31. [Pg.338]

The Diels-Alder reaction is the best known and most widely used pericyclic reaction. Two limiting mechanisms are possible (see Fig. 10.11) and have been vigorously debated. In the first, the addition takes place in concerted fashion with two equivalent new bonds forming in the transition state (bottom center, Fig. 10.11), while for the second reaction path the addition occurs stepwise (top row, Fig. 10.11). The stepwise path involves the formation of a single bond between the diene (butadiene in our example) and the dienophile (ethylene) and (most likely) a diradical intermediate, although zwitterion structures have also been proposed. In the last step, ring closure results with the formation of a second new carbon carbon bond. Either step may be rate determining. [Pg.336]

Fig. 10.11 The stepwise and concerted mechanisms for the Diels-Alder reaction between butadiene and ethylene. The reactants (lower left) proceed to the product, cyclohexene (lower right) either through a two step, two transition state mechanism involving the formation of a diradical intermediate (top center), or more directly through the symmetric synchronous transition state (bottom center) (Storer, J. W., Raimondi, L., and Houk, K. N., J. Am. Chem. Soc. 116, 9675 (1994))... Fig. 10.11 The stepwise and concerted mechanisms for the Diels-Alder reaction between butadiene and ethylene. The reactants (lower left) proceed to the product, cyclohexene (lower right) either through a two step, two transition state mechanism involving the formation of a diradical intermediate (top center), or more directly through the symmetric synchronous transition state (bottom center) (Storer, J. W., Raimondi, L., and Houk, K. N., J. Am. Chem. Soc. 116, 9675 (1994))...
The behavior described above has been verified by experiment and calculation on numerous substituted dienes and dienophiles. For example Fig. 10.13 shows results for 2°-D isotope effects on Diels-Alder reactions of 2-methyl-butadiene with cyano-ethylene and 1,1-dicyano-ethylene. The calculated and experimental isotope effects are in quantitative agreement with each other and with the results on (butadiene + ethylene). In each case the excellent agreement between calculated and observed isotope effects validates the concerted mechanism and establishes the structure of the transition state as that shown at the bottom center of Fig. 10.11 and the left side of Fig. 10.12a. [Pg.338]

Quite generally, kinetic solvent effects on the Diels-Alder reaction are small, and, in fact, the small solvent effects have been taken as evidence for minor charge separation during the activation process, consistent with a concerted mechanism. [Pg.160]

We now turn to the gas-phase 1,3-dipolar cycloaddition of fulminic acid to ethyne. The concerted, almost synchronous nature of this reaction might create the impression that the electronic mechanism of this process should be very similar to that of the Diels-Alder reaction. Such an expectation is reinforced by frontier orbital theory, which treats both reactions in very much the same way (see Ref. 32). The only significant differences are related to the fact that the lowest unoccupied MO (LUMO) for a linear 1,3-dipole... [Pg.334]

Due to the formal analogy to the classical Diels-Alder reaction, the mechanism of cyclic peroxide formation through cycloadditions of 1,3-dienes with O2 was considered for a long time to involve a concerted suprafacial [4 4- 2]-cycloaddition of a super-dienophile, namely a singlet oxygen to 1,3-dienic system In such a case, the concerted or almost concerted cycloaddition must be c -stereospecific and the stereochemical properties of the diene must be reflected in the three-dimensional structure of cyclic peroxide according to well-defined rules. Indeed, it was found in early stereochemical... [Pg.253]

Intramolecular ionic Diels-Alder reactions were carried out in highly polar media to afford carbocyclic ring systems. The strategy, which obviates the need for high temperatures and pressures, features in situ generation of heteroatom-stabUized allyl cations that undergo subsequent (4 + 2) cycloaddition at ambient temperature. Typically, reactions were complete within 1 hour after addition of substrate. Some cycloadducts were the result of a concerted process, whereas others were formed via a stepwise reaction mechanism (Grieco, 1996). [Pg.162]


See other pages where Diels-Alder reactions concerted mechanism is mentioned: [Pg.309]    [Pg.34]    [Pg.308]    [Pg.315]    [Pg.93]    [Pg.1061]    [Pg.1067]    [Pg.153]    [Pg.474]    [Pg.255]    [Pg.258]    [Pg.854]    [Pg.107]    [Pg.393]    [Pg.151]    [Pg.18]    [Pg.337]    [Pg.151]    [Pg.14]    [Pg.173]    [Pg.332]    [Pg.332]    [Pg.93]    [Pg.15]   
See also in sourсe #XX -- [ Pg.360 ]




SEARCH



Concerted

Concerted mechanism

Concerted reaction

Concerts

Diels-Alder mechanism

Diels-Alder reactions concerted/stepwise mechanisms

Mechanism Diels Alder reaction

© 2024 chempedia.info