Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reactions ionic

Keywords good solvents for Diels-Alder reactions, ionic liquids... [Pg.305]

To avoid the use of organic solvents in Diels-Alder reactions, ionic liquid was recognized as a promising alternative solvent because its specific features of excellent solubility, lack of volatility, tunable polarity, and stable reusability [27]. 8-Ethyl-1,8-diazabicyclo[5,4,0]-7-undecenium trifiuoromethanesulfonate ([Et-DBUjOTf) was utilized as a recoverable medium for Sc(OTf)3-catalyzed one-pot aza-Diels-Alder reactions of aromatic aldehydes, anilines and Danishefsky s diene (Scheme 12.15) [28]. In this reaction system, Sc(OTf)3 is recovered smoothly in... [Pg.67]

Scheme 2.5. Synthesis of the ionic dienophiles 2.4f and 2.4g. features of the nncatalysed reaction will be discussed The kinetics of the Diels-Alder reaction of 2,4... Scheme 2.5. Synthesis of the ionic dienophiles 2.4f and 2.4g. features of the nncatalysed reaction will be discussed The kinetics of the Diels-Alder reaction of 2,4...
Comparison of the water-induced acceleration of the reaction of 2.4a with the corresponding effect on 2.4g is interesting, since 2.4g contains an ionic group remote from the reaction centre. The question arises whether this group has an influence on the acceleration of the Diels-Alder reaction by water. Comparison of the data in Table 2.1 demonstrates that this is not the case. The acceleration upon going from ethanol to water amounts a factor 105 ( 10) for 2.4a versus 110 ( 11) for 2.4g. Apparently, the introduction of a hydrophilic group remote from the reaction centre has no effect on the aqueous acceleration of the Diels-Alder reaction. [Pg.52]

The rate constants for the catalysed Diels-Alder reaction of 2.4g with 2.5 (Table 2.3) demonstrate that the presence of the ionic group in the dienophile does not diminish the accelerating effect of water on the catalysed reaction. Comparison of these rate constants with those for the nonionic dienophiles even seems to indicate a modest extra aqueous rate enhancement of the reaction of 2.4g. It is important to note here that no detailed information has been obtained about the exact structure of the catalytically active species in the oiganic solvents. For example, ion pairing is likely to occur in the organic solvents. [Pg.56]

Table 2.5. Apparent second-order rate constants for the catalysed Diels-Alder reaction between Ic and 2, equilibrinm constants for complexation of 2.4c to different Lewis-acids (Kj) and second-order rate constants for the reaction of these complexes with 2.5 (k at) in water at 2M ionic strength at 25°C. Table 2.5. Apparent second-order rate constants for the catalysed Diels-Alder reaction between Ic and 2, equilibrinm constants for complexation of 2.4c to different Lewis-acids (Kj) and second-order rate constants for the reaction of these complexes with 2.5 (k at) in water at 2M ionic strength at 25°C.
Table 2.7. Hammett p-values for complexation of 2.4a-e to different Lewis-adds and for rate constants (kcat) of the Diels-Alder reaction of 2.4a-e with 2.5 catalysed by different Lewis-acids in water at 2.00 M ionic strength at 25°C. Table 2.7. Hammett p-values for complexation of 2.4a-e to different Lewis-adds and for rate constants (kcat) of the Diels-Alder reaction of 2.4a-e with 2.5 catalysed by different Lewis-acids in water at 2.00 M ionic strength at 25°C.
Studies of the Diels-Alder reaction of the ionic dienophile 2.4g have demonstrated that the acpieous acceleration of the uncatalysed reaction as well as the catalysed reaction is not significantly affected by the presence of the ionic group at a site remote from the reaction centre. [Pg.64]

To date a number of reactions have been carried out in ionic liquids [for examples, see Dell Anna et al. J Chem Soc, Chem Commun 434 2002 Nara, Harjani and Salunkhe Tetrahedron Lett 43 1127 2002 Semeril et al. J Chem Soc Chem Commun 146 2002 Buijsman, van Vuuren and Sterrenburg Org Lett 3 3785 2007]. These include Diels-Alder reactions, transition-metal mediated catalysis, e.g. Heck and Suzuki coupling reactions, and olefin metathesis reactions. An example of ionic liquid acceleration of reactions carried out on solid phase is given by Revell and Ganesan [Org Lett 4 3071 2002]. [Pg.77]

Furthermore in certain cases Diels-Alder reactions may proceed by an ionic mechanism. [Pg.92]

One of the earliest solvent polarity scales is Person s D scale. This scale is based on the endojexo ratio of the Diels-Alder reaction between cyclopentadiene and methyl acrylate (Figure 3.5-2, O = logio endo/exo). This reaction has been conducted in a number of ionic liquids, giving values in the 0.46-0.83 range [26]. [Pg.100]

Scheme 5.1-16 The Diels-Alder reaction in a chloroaluminate(lll) ionic liquid. Scheme 5.1-16 The Diels-Alder reaction in a chloroaluminate(lll) ionic liquid.
Eee has used chloroaluminate(III) ionic liquids in the Diels-Alder reaction [36]. The endo. exo ratio rose from 5.25 to 19 on changing the composition of the ionic liquid from X(A1C13) = 0.48 to X(A1C13) = 0.51 (Scheme 5.1-16). The reaction works well, giving up to 95 % yield, but the moisture-sensitivity of these systems is a major disadvantage, the products being recovered by quenching the ionic liquid in water. [Pg.181]

Diels-Alder reactions Neutral ionic liquids have been found to be excellent solvents for the Diels-Alder reaction. The first example of a Diels-Alder reaction in an ionic liquid was the reaction of methyl acrylate with cyclopentadiene in [EtNH3][N03] [40], in which significant rate enhancement was observed. Howarth et al. investigated the role of chiral imidazolium chloride and trifluoroacetate salts (dissolved in dichloromethane) in the Diels-Alder reactions between cyclopentadiene and either crotonaldehyde or methacroline [41]. It should be noted that this paper describes one of the first examples of a chiral cationic ionic liquid being used in synthesis (Scheme 5.1-17). The enantioselectivity was found to be < 5 % in this reaction for both the endo (10 %) and the exo (90 %) isomers. [Pg.182]

A study of the Diels-Alder reaction was carried out by Earle et al. [42]. The rates and selectivities of reactions between ethyl acrylate (EA) and cyclopentadiene (CP) in water, 5 m lithium perchlorate in diethyl ether (5 m EPDE), and [BMIM][PE(3] were compared. The reactions in the ionic liquid [BMIM][PE(3] were marginally faster than in water, but both were slower than in 5 m EPDE [42, 43] (see Table 5.1-1 and Scheme 5.1-18). It should be noted that these three reactions give up to 98 % yields if left for 24 hours. The endo. exo selectivity in [BMIM][PE(3] was similar to that in 5 M EPDE, and considerably greater than that in water (Table 5.1-1). [Pg.182]

Scheme 5.1-17 Use of a chiral ionic liquid in a Diels-Alder reaction. Scheme 5.1-17 Use of a chiral ionic liquid in a Diels-Alder reaction.
A similar study performed by Welton and co-workers studied the rate and selec-tivities of the Diels-Alder reaction between cyclopentadiene and methyl acrylate in a number of neutral ionic liquids [44]. It was found that endo. exo ratios decreased slightly as the reaction proceeded, and were dependent on reagent concentration and ionic liquid type. Subsequently, they went on to demonstrate that the ionic liquids controlled the endo. exo ratios through a hydrogen bond (Lewis acid) interaction with the electron-withdrawing group of the dienophile. [Pg.183]

Scheme 5.1-19 The aza-Diels-Alder reaction in an ionic liquid. Scheme 5.1-19 The aza-Diels-Alder reaction in an ionic liquid.
Many organic chemical transformations have been carried out in ionic liquids hydrogenation [4, 5], oxidation [6], epoxidation [7], and hydroformylation [8] reactions, for example. In addition to these processes, numerous synthetic routes involve a carbon-carbon (C-C) bond-forming step. As a result, many C-C bondforming procedures have been studied in ambient-temperature ionic liquids. Among those reported are the Friedel-Crafts acylation [9] and allcylation [10] reactions, allylation reactions [11, 12], the Diels-Alder reaction [13], the Heck reaction [14], and the Suzuld [15] and Trost-Tsuji coupling [16] reactions. [Pg.319]

Gassman [92] has been a pioneer of ionic Diels-Alder reactions that proceed via in situ generation of cationic species (allylic cations) from olefinic precursors... [Pg.187]

Table 4.26 Electrochemical ionic Diels-Alder reactions... Table 4.26 Electrochemical ionic Diels-Alder reactions...
Studies in Lewis acid and LiCi04 (or nafion-H) catalyzed ionic Diels-Alder reactions of chiral and achiral olefinic acetals respectively [96]... [Pg.199]

An endo-selective ionic Diels-Alder reaction of a,/f-enone and a,/f-enal acetals catalyzed by electrogenerated acid [99]... [Pg.200]

Room temperature ionic liquids have been found to be excellent solvents for a number of reactions [50b] such as the isomerization [51], hydrogenation [52] and Friedel-Crafts reactions [53]. A number of Diels-Alder reactions were recently investigated in these systems. [Pg.279]

Earle and coworkers [54] have performed Diels-Alder reactions in neutral ionic liquids. The results of reactions of cyclopentadiene with dimethyl maleate, ethyl acrylate and acrylonitrile are reported in Table 6.10. The cycloadditions proceeded at room temperature in all of the ionic liquids tested, except [BMIMJPF4, and gave almost quantitative yields after 18-24h. The endo/exo selectivity depends on dienophile. No enantioselectivity was observed in the [BMIM] lactate reaction. [Pg.279]

Table 6.10 Diels-Alder reactions of cyclopentadiene with dimethyl maleate, ethylacrylate and acrylonitrile in neutral ionic liquids... Table 6.10 Diels-Alder reactions of cyclopentadiene with dimethyl maleate, ethylacrylate and acrylonitrile in neutral ionic liquids...
Chloroaluminate ionic liquids (typically a mixture of a quaternary ammonium salt with aluminum chloride see Table 6.9) exhibit at room temperature variable Lewis acidity and have been successfully used as solvent/catalyst for Diels-Alder reactions [57]. The composition of chloroaluminate ionic liquids can vary from basic ([FMIM]C1 or [BP]C1 in excess) to acidic (AICI3 in excess) and this fact can be used to affect the reactivity and selectivity of the reaction. The reaction of cyclopentadiene with methyl acrylate is an example (Scheme 6.31). [Pg.280]

Acid catalyzed ionic Diels-Alder reactions in concentrated solutions of lithium perchlorate in diethyl ether [43]... [Pg.295]

Sanghi R., Vankar P. S., Vankar Y. D. Ionic Diels-Alder Reaction Recent Developments J. Indian Chem. Soc. 1998 75 709-715... [Pg.307]

However, most of the reactions are reported to be slow, taking up to 12 h for complete conversion of the starting materials. A Diels-Alder reaction of the pyrazinone scaffold with dimethyl acetylenedicarboxylate (DMAD) [57] has been studied in view of investigating the swiftness of this cycloaddition-fragmentation protocol (Scheme 20). The authors investigated the reaction with DMAD (lOequiv) under microwave irradiation at an elevated temperature of 190 °C, using small amounts of ionic liquid (bmimPFe) in... [Pg.280]

Scheme 23 Microwave-enhanced Diels-Alder reactions of alkene-tethered 2(lff)-pyra-zinones in ionic liquid doped solvents... Scheme 23 Microwave-enhanced Diels-Alder reactions of alkene-tethered 2(lff)-pyra-zinones in ionic liquid doped solvents...
For a theoretical investigation of the ionic Diels-Alder reaction see dePascual-Teresa, B. Houk, K.N. Tetrahedron Lett., 1996, 37, 1759. [Pg.1156]


See other pages where Diels-Alder reactions ionic is mentioned: [Pg.31]    [Pg.52]    [Pg.137]    [Pg.144]    [Pg.183]    [Pg.183]    [Pg.183]    [Pg.667]    [Pg.5]    [Pg.6]    [Pg.8]    [Pg.192]    [Pg.253]    [Pg.284]    [Pg.1061]   
See also in sourсe #XX -- [ Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.192 , Pg.200 , Pg.295 ]

See also in sourсe #XX -- [ Pg.454 ]

See also in sourсe #XX -- [ Pg.454 ]

See also in sourсe #XX -- [ Pg.454 ]

See also in sourсe #XX -- [ Pg.2 , Pg.4 , Pg.467 ]




SEARCH



Diels ionic

Ionic reactions

© 2024 chempedia.info