Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanisms Diels-Alder reaction

Organic Reaction Mechanism DIELS-ALDER REACTION... [Pg.97]

W C, A Tempcz)rrk, R C Hawley and T Hendrickson 1990. Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. Journal of the American Chemical Society 112 6127-6129. ensson M, S Humbel, R D J Froese, T Matsubara, S Sieber and K Morokuma 1996. ONIOM A Multilayered Integrated MO + MM Method for Geometry Optimisations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition. Journal of Physical Chemistry 100 19357-19363. [Pg.654]

This thesis contributes to the knowledge of catalysis in water, us it describes an explorative journey in the, at the start of the research, unh odded field of catalysis of Diels-Alder reactions in aqueous media. The discussion will touch on organic chemistry, coordination chemistry and colloid chemistry, largely depending upon the physical-organic approach of structural variation for the elucidation of the underlying mechanisms and principles of the observed phenomena. [Pg.2]

Despite this overwhelming body of evidence, two-step mechanisms have been suggested for the Diels-Alder reaction, probably inspired by special cases, where highly substituted dienes and/or dienophiles have been found to react through zwitterionic or biradicalintermediates (Scheme 1.2). [Pg.5]

The mechanism by which Lewis-acids can be expected to affect the rate of the Diels-Alder reaction in water is depicted in Scheme 2.6. The first step in the cycle comprises rapid and reversible coordination of the Lewis-acid to the dienophile, leading to a complex in which the dienophile is activated for reaction with the diene. After the irreversible Diels-Alder reaction, the product has to dissociate from the Lewis-acid in order to make the catalyst available for another cycle. The overall... [Pg.57]

Note that for 4.42, in which no intramolecular base catalysis is possible, the elimination side reaction is not observed. This result supports the mechanism suggested in Scheme 4.13. Moreover, at pH 2, where both amine groups of 4.44 are protonated, UV-vis measurements indicate that the elimination reaction is significantly retarded as compared to neutral conditions, where protonation is less extensive. Interestingy, addition of copper(II)nitrate also suppresses the elimination reaction to a significant extent. Unfortunately, elimination is still faster than the Diels-Alder reaction on the internal double bond of 4.44. [Pg.116]

Another class of reaction where you can see at once that the disconnection is the reverse of the reaction is Pericychc Reactions. An example would be the Diels-Alder reaction between butadiene and maleic anhydride. Draw the mechanism and the product. [Pg.5]

The mechanism of the Diels-Alder reaction is best understood on the basis of a molecular orbital approach To understand this approach we need to take a more detailed look at the rr orbitals of alkenes and dienes... [Pg.411]

The mechanism of the Diels-Alder reaction is not as simple as usually depicted. This may, in part, explain some of the problems encountered when this reaction has been appHed on an industrial scale. A number of different theories have been proposed for this reaction (50). [Pg.424]

The second mechanism, proposed by Mayo (116), involves the Diels-Alder reaction of two styrene molecules to form a reactive dimer (DH) followed by a molecular assisted homolysis between DH and another styrene molecule. [Pg.513]

Structure and Mechanism of Formation. Thermal dimerization of unsaturated fatty acids has been explaiaed both by a Diels-Alder mechanism and by a free-radical route involving hydrogen transfer. The Diels-Alder reaction appears to apply to starting materials high ia linoleic acid content satisfactorily, but oleic acid oligomerization seems better rationalized by a free-radical reaction (8—10). [Pg.114]

In 1973 two papers appeared almost simultaneously (73T101, 73CPB2026) describing the formation, as a minor product, of 3,4,5-trimethoxycarbonyl-l-phenylpyrazole (346) in the reaction between benzaldehyde phenylhydrazone and DMAD (EC=CE). To account for the formation of (346) George et al. (73T101) proposed a tentative mechanism (Scheme 29) involving a Diels-Alder reaction of type (a Figure 25), followed by a retro-Diels-Alder elimination of methyl phenylpropiolate (347). [Pg.248]

Further evidence showed this mechanism to be incorrect, especially the fact that it was methyl cinnamate and not (347) which was isolated from the reaction (73CPB2026). Also 1-phenylpyrazoles did not react with DMAD under the reaction conditions (74BSF2547). The origin of (346) remains obscure, but in no circumstances does it imply a Diels-Alder reaction of a pyrazole. For Ogura et al., it has its origin in an intermediate A -pyrazoline (73CPB2026). [Pg.248]

Fig. 6. Curing mechanism of a maleimide resin via Diels-Alder reaction [12). Fig. 6. Curing mechanism of a maleimide resin via Diels-Alder reaction [12).
In all the reactions described so far a chiral Lewis acid has been employed to promote the Diels-Alder reaction, but recently a completely different methodology for the asymmetric Diels-Alder reaction has been published. MacMillan and coworkers reported that the chiral secondary amine 40 catalyzes the Diels-Alder reaction between a,/ -unsaturated aldehydes and a variety of dienes [59]. The reaction mechanism is shown in Scheme 1.73. An a,/ -unsaturated aldehyde reacts with the chiral amine 40 to give an iminium ion that is sufficiently activated to engage a diene reaction partner. Diels-Alder reaction leads to a new iminium ion, which upon hydrolysis af-... [Pg.46]

Honk et al. concluded that this FMO model imply increased asynchronicity in the bond-making processes, and if first-order effects (electrostatic interactions) were also considered, a two-step mechanisms, with cationic intermediates become possible in some cases. It was stated that the model proposed here shows that the phenomena generally observed on catalysis can be explained by the concerted mechanism, and allows predictions of the effect of Lewis acid on the rates, regioselectivity, and stereoselectivity of all concerted cycloadditions, including those of ketenes, 1,3-dipoles, and Diels-Alder reactions with inverse electron-demand [2],... [Pg.305]

The mechanism of the carbo-Diels-Alder reaction has been a subject of controversy with respect to synchronicity or asynchronicity. With acrolein as the dieno-phile complexed to a Lewis acid, one would not expect a synchronous reaction. The C1-C6 and C4—C5 bond lengths in the NC-transition-state structure for the BF3-catalyzed reaction of acrolein with butadiene are calculated to be 2.96 A and 1.932 A, respectively [6]. The asynchronicity of the BF3-catalyzed carbo-Diels-Alder reaction is also apparent from the pyramidalization of the reacting centers C4 and C5 of NC (the short C-C bond) is pyramidalized by 11°, while Cl and C6 (the long C-C bond) are nearly planar. The lowest energy transition-state structure (NC) has the most pronounced asynchronicity, while the highest energy transition-state structure (XT) is more synchronous. [Pg.306]

The mechanism for the catalytic enantioselective carbo-Diels-Alder reaction of N-alkenoyl-l,3-oxazolidin-2-one 4 with, e.g., cyclopentadiene 2 catalyzed by chiral TADDOL-Ti(IV) complexes 6 has been the subject for several investigations and especially, the structure of the intermediate for the reaction has been subject to controversy. The coordination of 4 to 6 can give five diastereomeric complexes A, B], B2, C], and C2, as outlined in Fig. 8.8. [Pg.310]

The mechanism for the hetero-Diels-Alder reaction of benzaldehyde 9 with the very reactive diene, Danishefsky s diene 10, catalyzed by aluminum complexes has been investigated from a theoretical point of view using semi-empirical calculations [27]. The focus in this investigation was to address the question if the reaction proceeds directly to the hetero-Diels-Alder adduct 11, or if 11 is formed via a Mukaiyama aldol intermediate (Scheme 8.4) (see the chapter dealing with hetero-Diels-Alder reactions of carbonyl compounds). [Pg.316]

Compound 5 can be trapped through a Diels-Alder reaction with maleic anhydride and thus be shown to be an intermediate. Further evidence for a mechanism involving two subsequent allyl conversions has been provided by experiments with " C-labeled substrates. [Pg.59]

For most Diels-Alder reactions a concerted mechanism as described above, is generally accepted. In some cases, the kinetic data may suggest the intermediacy of a diradical intermediate 18 ... [Pg.91]

Furthermore in certain cases Diels-Alder reactions may proceed by an ionic mechanism. [Pg.92]

The mechanism of the Diels-Alder cycloaddition is different from that of other reactions we ve studied because it is neither polar nor radical. Rather, the Diels-Alder reaction is a pericyclic process. Pericyclic reactions, which we ll discuss in more detail in Chapter 30, take place in a single step by a cyclic redistribution of bonding electrons. The two reactants simply join together through a cyclic transition state in which the two new carbon-carbon bonds form at the same time. [Pg.493]

In the Diels-Alder transition state, the two alkene carbons and carbons 1 and 4 of the diene rehybridize from sp2 to sp 5 to form two new single bonds, while carbons 2 and 3 of the diene remain sp2-hybridized to form the new double bond in the cyclohexene product. We ll study this mechanism at greater length in Chapter 30 but will concentrate for the present on learning more about the characteristics and uses of the Diels-Alder reaction. [Pg.493]

Like the Diels-Alder reaction discussed in Sections 14.4 and 14.5, the Claisen rearrangement reaction takes place through a pericyclic mechanism in which a concerted reorganization of bonding electrons occurs through a six-membered, cyclic transition state. The 6-allyl-2,4-cyclohexadienone intermediate then isomerizes to o-allylpbenol (Figure 18.1). [Pg.660]

Diels-Alder reaction, 492 characteristics of, 492-497 dienes in, 496-497 dienophiles in. 493-494 electrostatic potential map of. 493 endo stereochemistry of, 495 HOMO in. 1188-1189 LUMO in. 1188-1189 mechanism of. 493 s-cis diene conformation in, 496-497... [Pg.1294]

The sequence depicted has been suggested as a plausible reaction mechanism. Diazabasketene primarily reacts via a retro-Diels-Alder reaction to give an azine which, after a Cope rearrangement, undergoes a further retro-Diels -Alder reaction to cleave off hydrogen cyanide. The resulting azabicyclo[4.2.0]octatriene finally isomerizes to the target molecule. [Pg.511]

Most Diels-Alder reactions, particularly the thermal ones and those involving apolar dienes and dienophiles, are described by a concerted mechanism [17]. The reaction between 1,3-butadiene and ethene is a prototype of concerted synchronous reactions that have been investigated both experimentally and theoretically [18]. A concerted unsymmetrical transition state has been invoked to justify the stereochemistry of AICI3-catalyzed cycloadditions of alkylcyclohexenones with methyl-butadienes [12]. The high syn stereospecificity of the reaction, the low solvent effect on the reaction rate, and the large negative values of both activation entropy and activation volume comprise the chemical evidence usually given in favor of a pericyclic Diels-Alder reaction. [Pg.5]

Anionic Diels-Alder reactions have been studied less extensively with the interest having been focused mainly on the cycloaddition of enolates of a,/l-unsaturated ketones with electron-poor olefins [24] (Equations 1.8 and 1.9). These reactions are fast and stereoselective and can be regarded as a sequential double Michael condensation, but a mechanism involving a Diels-Alder cycloaddition seems to be preferred [24b,f, 25]. [Pg.7]


See other pages where Mechanisms Diels-Alder reaction is mentioned: [Pg.309]    [Pg.631]    [Pg.12]    [Pg.24]    [Pg.75]    [Pg.78]    [Pg.92]    [Pg.460]    [Pg.135]    [Pg.243]    [Pg.34]    [Pg.47]    [Pg.265]    [Pg.308]    [Pg.315]    [Pg.93]    [Pg.1314]    [Pg.88]    [Pg.6]   
See also in sourсe #XX -- [ Pg.409 ]




SEARCH



Concerted mechanism Diels-Alder reactions

Diels-Alder cycloaddition reaction mechanism

Diels-Alder mechanism

Diels-Alder reaction diradical mechanism

Diels-Alder reactions concerted/stepwise mechanisms

Mechanism of Diels-Alder reaction

Mechanism of the Diels-Alder Reaction

Organic reaction mechanisms Diels-Alder reactions

© 2024 chempedia.info