Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Computer simulation approximant

The CS pressures are close to the machine calculations in the fluid phase, and are bracketed by the pressures from the virial and compressibility equations using the PY approximation. Computer simulations show a fluid-solid phase transition tiiat is not reproduced by any of these equations of state. The theory has been extended to mixtures of hard spheres with additive diameters by Lebowitz [35], Lebowitz and Rowlinson [35], and Baxter [36]. [Pg.482]

The themiodynamic properties calculated by different routes are different, since the MS solution is an approximation. The osmotic coefficient from the virial pressure, compressibility and energy equations are not the same. Of these, the energy equation is the most accurate by comparison with computer simulations of Card and Valleau [ ]. The osmotic coefficients from the virial and compressibility equations are... [Pg.495]

Van Gunsteren, W.F., Beutler, T.C., Praternali, F., King, P.M., Mark, A.E., Smith, P.E. Computation of free energy in practice Choice of approximations and accuracy limiting factors, in Computer Simulations of Biomolecular Systems, Vol 2, W.F. van Gunsteren, P.K. Weiner and A.J. Wilkinson, eds. Escom, Leiden (1993) 315-348. [Pg.28]

Gerber, P. R., Mark, A. E., van Gunsteren, W. F. An approximate but efficient method to calculate free energy trends by computer simulation Application to dihydrofolate reductase-inhibitor complexes. J. Comp. Aid. Mol. Desgn 7 (1993) 305-323... [Pg.161]

With these kinetic data and a knowledge of the reactor configuration, the development of a computer simulation model of the esterification reaction is iavaluable for optimising esterification reaction operation (25—28). However, all esterification reactions do not necessarily permit straightforward mathematical treatment. In a study of the esterification of 2,3-butanediol and acetic acid usiag sulfuric acid catalyst, it was found that the reaction occurs through two pairs of consecutive reversible reactions of approximately equal speeds. These reactions do not conform to any simple first-, second-, or third-order equation, even ia the early stages (29). [Pg.375]

Modem understanding of the hydrophobic effect attributes it primarily to a decrease in the number of hydrogen bonds that can be achieved by the water molecules when they are near a nonpolar surface. This view is confirmed by computer simulations of nonpolar solutes in water [15]. To a first approximation, the magnimde of the free energy associated with the nonpolar contribution can thus be considered to be proportional to the number of solvent molecules in the first solvation shell. This idea leads to a convenient and attractive approximation that is used extensively in biophysical applications [9,16-18]. It consists in assuming that the nonpolar free energy contribution is directly related to the SASA [9],... [Pg.139]

Simple considerations show that the membrane potential cannot be treated with computer simulations, and continuum electrostatic methods may constimte the only practical approach to address such questions. The capacitance of a typical lipid membrane is on the order of 1 j.F/cm-, which corresponds to a thickness of approximately 25 A and a dielectric constant of 2 for the hydrophobic core of a bilayer. In the presence of a membrane potential the bulk solution remains electrically neutral and a small charge imbalance is distributed in the neighborhood of the interfaces. The membrane potential arises from... [Pg.143]

Computer simulation techniques offer the ability to study the potential energy surfaces of chemical reactions to a high degree of quantitative accuracy [4]. Theoretical studies of chemical reactions in the gas phase are a major field and can provide detailed insights into a variety of processes of fundamental interest in atmospheric and combustion chemistry. In the past decade theoretical methods were extended to the study of reaction processes in mesoscopic systems such as enzymatic reactions in solution, albeit to a more approximate level than the most accurate gas-phase studies. [Pg.221]

The comparison with experiment can be made at several levels. The first, and most common, is in the comparison of derived quantities that are not directly measurable, for example, a set of average crystal coordinates or a diffusion constant. A comparison at this level is convenient in that the quantities involved describe directly the structure and dynamics of the system. However, the obtainment of these quantities, from experiment and/or simulation, may require approximation and model-dependent data analysis. For example, to obtain experimentally a set of average crystallographic coordinates, a physical model to interpret an electron density map must be imposed. To avoid these problems the comparison can be made at the level of the measured quantities themselves, such as diffraction intensities or dynamic structure factors. A comparison at this level still involves some approximation. For example, background corrections have to made in the experimental data reduction. However, fewer approximations are necessary for the structure and dynamics of the sample itself, and comparison with experiment is normally more direct. This approach requires a little more work on the part of the computer simulation team, because methods for calculating experimental intensities from simulation configurations must be developed. The comparisons made here are of experimentally measurable quantities. [Pg.238]

It is important to note that we assume the random fracture approximation (RPA) is applicable. This assumption has certain implications, the most important of which is that it bypasses the real evolutionary details of the highly complex process of the lattice bond stress distribution a) creating bond rupture events, which influence other bond rupture events, redistribution of 0(microvoid formation, propagation, coalescence, etc., and finally, macroscopic failure. We have made real lattice fracture calculations by computer simulations but typically, the lattice size is not large enough to be within percolation criteria before the calculations become excessive. However, the fractal nature of the distributed damage clusters is always evident and the RPA, while providing an easy solution to an extremely complex process, remains physically realistic. [Pg.380]

To illustrate the relationship between the microscopic structure and experimentally accessible information, we compute pseudo-experimental solvation-force curves F h)/R [see Eq. (22)] as they would be determined in SEA experiments from computer-simulation data for T z [see Eqs. (93), (94), (97)]. Numerical values indicated by an asterisk are given in the customary dimensionless (i.e., reduced) units (see [33,75,78] for definitions in various model systems). Results are correlated with the microscopic structure of a thin film confined between plane parallel substrates separated by a distance = h. Here the focus is specifically on a simple fluid in which the interaction between a pair of film molecules is governed by the Lennard-Jones (12,6) potential [33,58,59,77,79-84]. A confined simple fluid serves as a suitable model for approximately spherical OMCTS molecules confined... [Pg.31]

Fig. 10(a) presents a comparison of computer simulation data with the predictions of both density functional theories presented above [144]. The computations have been carried out for e /k T = 7 and for a bulk fluid density equal to pi, = 0.2098. One can see that the contact profiles, p(z = 0), obtained by different methods are quite similar and approximately equal to 0.5. We realize that the surface effects extend over a wide region, despite the very simple and purely repulsive character of the particle-wall potential. However, the theory of Segura et al. [38,39] underestimates slightly the range of the surface zone. On the other hand, the modified Meister-Kroll-Groot theory [145] leads to a more correct picture. [Pg.216]

To solve the replica OZ equations, they must be completed by closure relations. Several closures have been tested against computer simulations for various models of fluids adsorbed in disordered porous media. In particular, common Percus-Yevick (PY) and hypernetted chain approximations have been applied [20]. Eq. (21) for the matrix correlations can be solved using any approximation. However, it has been shown by Given and Stell [17-19] that the PY closure for the fluid-fluid correlations simplifies the ROZ equation, the blocking effects of the matrix structure are neglected in this... [Pg.302]

The behavior of simple and molecular ions at the electrolyte/electrode interface is at the core of many electrochemical processes. The complexity of the interactions demands the introduction of simplifying assumptions. In the classical double layer models due to Helmholtz [120], Gouy and Chapman [121,122], and Stern [123], and in most analytic studies, the molecular nature of the solvent has been neglected altogether, or it has been described in a very approximate way, e.g. as a simple dipolar fluid. Computer simulations... [Pg.358]

Besides crystalline order and structure, the chain conformation and segment orientation of polymer molecules in the vicinity of the surface are also expected to be modified due to the specific interaction and boundary condition at the surface between polymers and air (Fig. 1 a). According to detailed computer simulations [127, 128], the chain conformation at the free polymer surface is disturbed over a distance corresponding approximately to the radius of gyration of one chain. The chain segments in the outermost layers are expected to be oriented parallel to the surface and chain ends will be enriched at the surface. Experiments on the chain conformation in this region are not available, but might be feasible with evanescent wave techniques described previously. Surface structure on a micrometer scale is observed with IR-ATR techniques [129],... [Pg.384]

Bessel function 40, 99, 201, 264 binary approximation 7, 41 binary collisions adiabatic/non-adiabatic 4 angular momentum, computer simulations 40... [Pg.295]

With time-dependent computer simulation and visualization we can give the novices to QM a direct mind s eye view of many elementary processes. The simulations can include interactive modes where the students can apply forces and radiation to control and manipulate atoms and molecules. They can be posed challenges like trapping atoms in laser beams. These simulations are the inside story of real experiments that have been done, but without the complexity of macroscopic devices. The simulations should preferably be based on rigorous solutions of the time dependent Schrddinger equation, but they could also use proven approximate methods to broaden the range of phenomena to be made accessible to the students. Stationary states and the dynamical transitions between them can be presented as special cases of the full dynamics. All these experiences will create a sense of familiarity with the QM realm. The experiences will nurture accurate intuition that can then be made systematic by the formal axioms and concepts of QM. [Pg.27]


See other pages where Computer simulation approximant is mentioned: [Pg.35]    [Pg.35]    [Pg.575]    [Pg.484]    [Pg.518]    [Pg.741]    [Pg.2363]    [Pg.161]    [Pg.333]    [Pg.358]    [Pg.447]    [Pg.141]    [Pg.73]    [Pg.23]    [Pg.145]    [Pg.148]    [Pg.237]    [Pg.467]    [Pg.385]    [Pg.9]    [Pg.182]    [Pg.238]    [Pg.252]    [Pg.296]    [Pg.305]    [Pg.306]    [Pg.321]    [Pg.330]    [Pg.341]    [Pg.350]    [Pg.548]    [Pg.805]    [Pg.700]    [Pg.839]    [Pg.226]   
See also in sourсe #XX -- [ Pg.83 , Pg.119 ]




SEARCH



Computational simulations

Computer simulation

© 2024 chempedia.info