Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compressive alumina

DISPOSAL AND STORAGE METHODS disposal of wastes should be in accordance with guidelines set forth by the nuclear regulatory commission burial at an authorized radioactive burial site is recommended store in a cool, dry location maintain adequate ventilation store in concrete tanks lined with steel containers of compressed alumina have been recommended, as this material remains impervious to water uranium hexafluoride is best handled in copper apparatus storage in salt formations is under serious consideration because they are self-sealing and free from water. [Pg.980]

By-product water formed in the methanation reactions is condensed by either refrigeration or compression and cooling. The remaining product gas, principally methane, is compressed to desired pipeline pressures of 3.4—6.9 MPa (500—1000 psi). Einal traces of water are absorbed on siHca gel or molecular sieves, or removed by a drying agent such as sulfuric acid, H2SO4. Other desiccants maybe used, such as activated alumina, diethylene glycol, or concentrated solutions of calcium chloride (see Desiccants). [Pg.75]

The second Hquefaction process is carried out at temperatures from 261 to 296 K, with Hquefaction pressures of about 1600—2400 kPa (16—24 atm). The compressed gas is precooled to 277 to 300 K, water and entrained oil are separated, and the gas is then dehydrated ia an activated alumina, bauxite, or siHca gel drier, and flows to a refrigerant-cooled condenser (see Drying agents). The Hquid is then distilled ia a stripper column to remove noncombustible impurities. Liquid carbon dioxide is stored and transported at ambient temperature ia cylinders containing up to 22.7 kg. Larger quantities are stored ia refrigerated iasulated tanks maintained at 255 K and 2070 kPa (20 atm), and transported ia iasulated tank tmcks and tank rail cars. [Pg.23]

Butyl slurry at 25—35 wt % mbber continuously overflows from the reactor through a transferline to an agitated flash dmm operating at 140—160 kPa (1.4—1.6 atm) and 55—70°C. Steam and hot water are mixed with the slurry in a nozzle as it enters the dmm to vaporize methyl chloride and unreacted monomers that pass overhead to a recovery system. The vapor stream is compressed, dried over alumina, and fractionated to yield a recycle stream of methyl chloride and isobutylene. Pure methyl chloride is recovered for the coinitiator (AlCl ) preparation. In the flash dmm, the polymer agglomerates as a coarse cmmb in water. Metal stearate, eg, aluminum, calcium, or zinc stearate, is added to control the cmmb size. Other additives, such as antioxidants, can also be introduced at this point. The polymer cmmb at 8—12 wt % in water flows from the flash dmm to a stripping vessel operated under high vacuum to... [Pg.482]

The depropanizer overhead, Cj and lighter feed is compressed to about 300 psi and then passed over a fixed bed of acetylene removal catalyst, generally palladium on alumina. Because of the very large amount of hydrogen contained in this stream, the operating conditions are critical to selectively hydrogenate the acetylene without degrading the valuable ethylene to ethane. [Pg.104]

The stationary phase matrices used in classic column chromatography are spongy materials whose compress-ibihty hmits flow of the mobile phase. High-pressure liquid chromatography (HPLC) employs incompressible silica or alumina microbeads as the stationary phase and pressures of up to a few thousand psi. Incompressible matrices permit both high flow rates and enhanced resolution. HPLC can resolve complex mixtures of Upids or peptides whose properties differ only slightly. Reversed-phase HPLC exploits a hydrophobic stationary phase of... [Pg.23]

Attempts have been made to improve the mechanical properties of these cements by adding reinforcing fillers (Lawrence Smith, 1973 Brown Combe, 1973 Barton et al, 1975). Lawrence Smith (1973) examined alumina, stainless steel fibre, zinc silicate and zinc phosphate. The most effective filler was found to be alumina powder. When added to zinc oxide powder in a 3 2 ratio, compressive strength was increased by 80 % and tensile strength by 100 % (cements were mixed at a powder/liquid ratio of 2 1). Because of the dilution of the zinc oxide, setting time (at 37 °C) was increased by about 100%. As far as is known, this invention has not been exploited commercially. [Pg.113]

In a further attempt to improve properties, Brauer, McLaughlin Huget (1968) examined the use of alumina as a reinforcing filler. Alumina is considerably more rigid than fused quartz. They achieved a considerable increase in strength. The preferred composition was the powder defined in Table 9.4, which had a compressive strength of 91 MPa. This zinc oxide based powder was the one most commonly used in subsequent studies by Brauer and coworkers. We shall refer to it as the EBA powder for it is the one used in commercial formulations and in a number of experimental studies. [Pg.339]

The catalyst powders were compressed to thin disks under a pressure of about 50 kg/cm2, with the exception of the alumina-supported catalysts which required a pressure of 1500 kg/cm2 to obtain reasonable transmittance. The samples were reduced in a stream of hydrogen supplied at a rate of 10 1 hr-1 (SV 30,000 hr-1). The temperatures of reduction were 350°-450°C for the nickel samples, 475°C for the palladium samples, and 425°C for the iridium catalysts. [Pg.87]

The catalyst was prepared by impregnating y-alumina (Alon) to incipient wetness using an aqueous solution of (PtClg). After impregnation, the powder was dried, and calcined in air at 773 K (500°C) for 2 h. The infrared disc was prepared by compressing 0.08 g of the catalyst powder at 58 840 N. The properties of the catalyst disc are listed in Table I. [Pg.81]

Compressed oxygen, and fresh and recycled ethylene, are heated, mixed, and then passed through a reactor with fixed beds of catalyst— silver oxide deposited on alumina pellets. In recent years the catalyst has been improved by the addition of promoters and inhibitors. (Promoters—in this case compounds of alkali or alkaline rare earth metals—enhance the activity of the catalyst inhibitors—in this case chlorine compounds—chloroethane, or vinyl chloride, reduce its rate of activity decline.)... [Pg.148]

There has been an enormous technological interest in tertfa/j-butanol (tBA) dehydration during the past thirty years, first as a primary route to methyl te/f-butyl ether (MTBE) (1) and more recently for the production of isooctane and polyisobutylene (2). A number of commercializable processes have been developed for isobutylene manufacture (eq 1) in both the USA and Japan (3,4). These processes typically involve either vapor-phase tBA dehydration over a silica-alumina catalyst at 260-370°C, or liquid-phase processing utilizing either homogenous (sulfonic acid), or solid acid catalysis (e.g. acidic cationic resins). More recently, tBA dehydration has been examined using silica-supported heteropoly acids (5), montmorillonite clays (6), titanosilicates (7), as well as the use of compressed liquid water (8). [Pg.469]

A similar route to Bi2Sr2CaCu/)8 tf developed by Beltran et al. (41) involves the reaction of Bi2Cu04, CaCOs, SrCOs, and CuO in appropriate ratios. These materials are well mixed and heated to 860°C in an alumina boat under flowing 02 for 16 hours. The reacted powder is ground, compressed into pellets, and sintered at 880°C for 20 hours and furnace-cooled to room temperature. This technique reportedly also led to single-phase samples. [Pg.268]

Fig. 8.9. Stress fields at the end of a trench etched in a 15f Fig. 8.9. Stress fields at the end of a trench etched in a 15f<m thick layer of sputtered alumina on a glass substrate. The trench was 15frm deep, 0.4 mm wide, and 10 mm long. The long-range residual stress in the alumina layer measured from the curvature of the glass substrate was —40 MPa (compressive). The top two collages are photographs of one end of the trench with measurements by acoustic microscopy of (a) the sum of the stresses axx + ayy and (b) the difference of the stresses ayy — axx f = 670 MHz. The bottom two pictures are finite-element calculations of the same geometries, with the points AB corresponding to those in the upper pictures and the colour scales corresponding in each case to the picture above, of (c) the sum of the stresses axx + ayy and (d) the difference of the stresses ayy — axx (Meeks et al. 1989).
Reactor effluent is cooled to remove the steam, compressed to 285 psig, passed through an activated alumina drying system to remove further amounts of water, and then fed to the first fractionator. In that vessel, 95% of the unconverted propane is recovered as a bottoms product. This stream also contains 3%... [Pg.36]

The presence of mullite and hence compressive surface stresses appears to improve the hardness and fracture toughness (see Table 5.2). These values are at least two to three times higher than those reported for the mullite/ alumina system described above. Clearly, the presence of mullite is desirable for inducing compressive stresses in the vicinity of the surface region by virtue of the mismatch in thermal expansion between ZTA and mullite. This significant improvement in the observed fracture toughness was attributed to... [Pg.139]


See other pages where Compressive alumina is mentioned: [Pg.98]    [Pg.88]    [Pg.1406]    [Pg.1072]    [Pg.98]    [Pg.88]    [Pg.1406]    [Pg.1072]    [Pg.415]    [Pg.75]    [Pg.498]    [Pg.376]    [Pg.8]    [Pg.201]    [Pg.375]    [Pg.339]    [Pg.366]    [Pg.204]    [Pg.201]    [Pg.56]    [Pg.106]    [Pg.47]    [Pg.150]    [Pg.278]    [Pg.116]    [Pg.490]    [Pg.581]    [Pg.521]    [Pg.8]    [Pg.666]    [Pg.27]    [Pg.113]    [Pg.1358]    [Pg.415]    [Pg.435]    [Pg.496]    [Pg.200]    [Pg.139]   
See also in sourсe #XX -- [ Pg.358 , Pg.360 ]




SEARCH



© 2024 chempedia.info