Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Composition of seawater

The salinity of seawater is defined as grams of dissolved salt per kg of seawater. Using good technique, salinity can be reported to 0.001%o or [Pg.197]

Ippm(m). By tradition, the major ions have been defined as those that make a significant contribution to the salinity. Thus, major ions are those with concentrations greater than 1 mg/kg or 1 ppm(m). By this definition, there are 11 major ions in seawater (Table 9-12). [Pg.197]

The elements Na, K, Cl, S, Br, B, and F are the most conservative major elements. No significant variations in the ratios of these elements to chlorine have been demonstrated. Strontium has a small ( 0.5%) depletion in the photic zone (Brass and Turekian, 1974), possibly due to the plankton Acantharia which makes its shell from SrS04 (celestite). Calcium has been known since the nineteenth century to be about 0.5% enriched in the deep sea relative to surface waters. Alkalinity (HCO3) also shows a deep enrichment. These elements are controlled by the formation and dissolution of CaC03 and are linked by the following reaction  [Pg.197]

By definition, a minor element in seawater is one that has a concentration of less than 1 ppm(m). It is [Pg.197]

Similar to salinity Na, K, Mg, SO4, F, Br Conservative elements of very low reactivity [Pg.197]


Calcium chloride is found in the marine environment. The elemental composition of seawater is 400 ppm calcium, 18,900 ppm chlorine, and many organisms and aquatic species are tolerant of these concentrations. Toxicity arises either from the invasion of freshwater in otherwise saltwater environments or possible toxic doses of calcium chloride from spills, surface mnoff, or underground percolation into typically freshwater streams or aquifers. Various agencies have guidelines for calcium and chloride in potable water (41). The European Economic Community (EEC) is the only agency to have a minimum specification for calcium in softened water. [Pg.416]

Seawater muds are commonly used on offshore locations, which eliminate the necessity of transporting large quantities of freshwater to the drilling location. The other advantage of seawater muds is their inhibition to the hydration and dispersion of clays, because of the salt concentration in seawater. The typical composition of seawater is presented in Table 4-48 most of the hardness of seawater is due to magnesium. [Pg.670]

MacKenzie and Carrels (1966) approached this problem by constructing a model based on a river balance. They first calculated the mass of ions added to the ocean by rivers over 10 years. This time period was chosen because geologic evidence suggests that the chemical composition of seawater has remained constant over that period. They assumed that the river input is balanced only by sediment removal. The results of this balance are shown in Table 10-13. [Pg.266]

Whitfield, M. and Turner, D. R. (1979). Water-rock partition coefficients and the composition of seawater and river water. Nature 278,132-137. [Pg.278]

Fig. 4.3. (A) Composite multispecies benthic foraminiferal Mg/Ca records from three deep-sea sites DSDP Site 573, ODP Site 926, and ODP Site 689. (B) Species-adjusted Mg/Ca data. Error bars represent standard deviations of the means where more than one species was present in a sample. The smoothed curve through the data represents a 15% weighted average. (C) Mg temperature record obtained by applying a Mg calibration to the record in (B). Broken line indicates temperatures calculated from the record assuming an ice-free world. Blue areas indicate periods of substantial ice-sheet growth determined from the S 0 record in conjunction with the Mg temperature. (D) Cenozoic composite benthic foraminiferal S 0 record based on Atlantic cores and normalized to Cibicidoides spp. Vertical dashed line indicates probable existence of ice sheets as estimated by (2). 3w, seawater S 0. (E) Estimated variation in 8 0 composition of seawater, a measure of global ice volume, calculated by substituting Mg temperatures and benthic 8 0 data into the 8 0 paleotemperature equation (Lear et al., 2000). Fig. 4.3. (A) Composite multispecies benthic foraminiferal Mg/Ca records from three deep-sea sites DSDP Site 573, ODP Site 926, and ODP Site 689. (B) Species-adjusted Mg/Ca data. Error bars represent standard deviations of the means where more than one species was present in a sample. The smoothed curve through the data represents a 15% weighted average. (C) Mg temperature record obtained by applying a Mg calibration to the record in (B). Broken line indicates temperatures calculated from the record assuming an ice-free world. Blue areas indicate periods of substantial ice-sheet growth determined from the S 0 record in conjunction with the Mg temperature. (D) Cenozoic composite benthic foraminiferal S 0 record based on Atlantic cores and normalized to Cibicidoides spp. Vertical dashed line indicates probable existence of ice sheets as estimated by (2). 3w, seawater S 0. (E) Estimated variation in 8 0 composition of seawater, a measure of global ice volume, calculated by substituting Mg temperatures and benthic 8 0 data into the 8 0 paleotemperature equation (Lear et al., 2000).
The average composition of seawater is shown in Table 1-3. Seawater muds have sodium chloride concentrations above 10,000 ppm. Most of the hardness in seawater is caused by magnesium. [Pg.4]

Which of these models best illustrates the composition of seawater ... [Pg.52]

Sigman et al. [134] have described a bacterial method for measuring the isotopic composition of seawater nitrate at the natural-abundance level. The method is based on the analysis of nitrous oxide gas (N2O) produced quantitatively from nitrate by denitrifying bacteria. The classical denitrification pathway consists of the stepwise reduction of nitrate (NOp to nitrite (N02), nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2) ... [Pg.89]

I apply these computational methods to various aspects of the Earth system, including the responses of ocean and atmosphere to the combustion of fossil fuels, the influence of biological activity on the variation of seawater composition between ocean basins, the oxidation-reduction balance of the deep sea, perturbations of the climate system and their effect on surface temperatures, carbon isotopes and the influence of fossil fuel combustion, the effect of evaporation on the composition of seawater, and diagenesis in carbonate sediments. These applications have not been fully developed as research studies rather, they are presented as potentially interesting applications of the computational methods. [Pg.5]

When they calculated the species distribution in seawater, Garrels and Thompson (1962) were probably the first to apply chemical modeling in the field of geochemistry. Modern chemical analyses give the composition of seawater in terms of... [Pg.3]

For a first chemical model, we calculate the distribution of species in surface seawater, a problem first undertaken by Garrels and Thompson (1962 see also Thompson, 1992). We base our calculation on the major element composition of seawater (Table 6.2), as determined by chemical analysis. To set pH, we assume equilibrium with CO2 in the atmosphere (Table 6.3). Since the program will determine the HCOJ and water activities, setting the CO2 fugacity (about equal to partial pressure) fixes pH according to the reaction,... [Pg.82]

Table 6.2. Major element composition of seawater (Drever, 1988)... Table 6.2. Major element composition of seawater (Drever, 1988)...
Table 30.1 shows the compositions of formation waters from three North Sea oil fields, and the composition of seawater (from Drever, 1988). The origin of the scaling problem is clear. Seawater contains more than 2500 mg kg-1 of sulfate but... [Pg.436]

Whitfield, M. and D.R. Turner (1987), The Role of Particles in Regulating the Composition of Seawater", in W. Stumm, Ed., Aquatic Surface Chemistry, Wiley-lnterscience, New York. [Pg.396]

Figure 16. Depth profiles from three ODP Sites, showing Li isotopic composition variations in pore waters (open symbols) and associated sediments (filled symbols), (a) Site 918, Irminger Basin, north Atlantic (Zhang et al. 1998) (b) Site 1038, Escanaba Trough, northeastern Pacific (James et al. 1999) (c) site 1039, Middle American Trench off of Costa Rica (Chan and Kastner 2000). The average composition of seawater is noted on each profile with dashed line (note different scales). Whereas sediments have relatively monotonous compositions, pore waters have compositions reflecting different origins and processes in each site. Interpretations of the data are summarized in the text under, Marine pore fluid-mineral processes. ... Figure 16. Depth profiles from three ODP Sites, showing Li isotopic composition variations in pore waters (open symbols) and associated sediments (filled symbols), (a) Site 918, Irminger Basin, north Atlantic (Zhang et al. 1998) (b) Site 1038, Escanaba Trough, northeastern Pacific (James et al. 1999) (c) site 1039, Middle American Trench off of Costa Rica (Chan and Kastner 2000). The average composition of seawater is noted on each profile with dashed line (note different scales). Whereas sediments have relatively monotonous compositions, pore waters have compositions reflecting different origins and processes in each site. Interpretations of the data are summarized in the text under, Marine pore fluid-mineral processes. ...
Figure 19. Plot of Li isotopic composition vs. inverse Li concentration for lakes and basinal/oilfield brines. Lakes open circle = major global lakes (Chan and Edmond 1988 Falkner et al. 1997) semi-open circle = western U.S. closed basin lakes (Tomascak et al. 2003). Oilfield brines inverted triangle = Williston basin, Saskatchewan (Bottomley et al. 2003) diamond = Israeli oilfields (Chan et al. 2002d). Mine waters (Canadian Shield basinal brines) square = Yellowknife, NWT (Bottomley et al. 1999) triangle = Sudbury, Ontario, area (Bottomley et al. 2003) star = Thompson, Manitoba, area (Bottomley et al. 2003). Average composition of seawater is included for reference. Figure 19. Plot of Li isotopic composition vs. inverse Li concentration for lakes and basinal/oilfield brines. Lakes open circle = major global lakes (Chan and Edmond 1988 Falkner et al. 1997) semi-open circle = western U.S. closed basin lakes (Tomascak et al. 2003). Oilfield brines inverted triangle = Williston basin, Saskatchewan (Bottomley et al. 2003) diamond = Israeli oilfields (Chan et al. 2002d). Mine waters (Canadian Shield basinal brines) square = Yellowknife, NWT (Bottomley et al. 1999) triangle = Sudbury, Ontario, area (Bottomley et al. 2003) star = Thompson, Manitoba, area (Bottomley et al. 2003). Average composition of seawater is included for reference.
Figure 16. (a) Ca isotope record from marine carbonates (De La Rocha and DePaolo 2000). The variations are inferred to reflect variations in the isotopic composition of seawater (which is heavier by about 1,4%o). The small excursions of S Ca reflect changes in the global weathering cycle they are recast in (b) in terms of the ratio of the flux of calcium being delivered to the ocean by weathering (Fw) to the flux of Ca being removed from the ocean by carbonate sedimentation (c) Smoothed record of benthic foraminiferal 5 0 for the Cenozoic time period from Zachos et al. (2001). [Pg.280]

Whitfield M, Turner DR (1987) The role of particles in regulating the composition of seawater. In Aquatic Surface Chemistry. Stumm W (ed) Wiley, New York, p 457-493... [Pg.318]

This simple two component model for the Fe isotope composition of seawater does not consider the effects of the Fe isotope composition of dissolved Fe from rivers or from rain. Although the dissolved Fe fluxes are small (Fig. 19) the dissolved fluxes may have an important control on the overall Fe isotope composition of the oceans if they represent an Fe source that is preferentially added to the hydrogenous Fe budget that is ultimately sequestered into Fe-Mn nodules. In particular riverine components may be very important in the Pacific Ocean where a significant amount of Fe to the oceans can be delivered from rivers that drain oceanic islands (Sholkovitz et al. 1999). An additional uncertainty lies in how Fe from particulate matter is utilized in seawater. For example, does the solubilization of Fe from aerosol particles result in a significant Fe isotope fractionation, and does Fe speciation lead to Fe isotope fractionation ... [Pg.350]

Figure 20. Calculated Fe isotope composition of seawater from different ocean basins based on a simple two-component mixing between Fe from aerosol particles and Fe from mid-oceanic-ridge (MOR) hydrothermal solutions. Atmospheric Fe fluxes (Jatm) for different ocean basins from Duce and Tindale (1991) MOR hydrothermal Fe flux ( mor) to different ocean basins were proportioned relative to ridge-axis length. Modified from Beard et al. (2003a). Figure 20. Calculated Fe isotope composition of seawater from different ocean basins based on a simple two-component mixing between Fe from aerosol particles and Fe from mid-oceanic-ridge (MOR) hydrothermal solutions. Atmospheric Fe fluxes (Jatm) for different ocean basins from Duce and Tindale (1991) MOR hydrothermal Fe flux ( mor) to different ocean basins were proportioned relative to ridge-axis length. Modified from Beard et al. (2003a).
The ion proportions in most river water is significantly different from that in seawater. As a result, river runoff can have a local impact on the ion ratios of coastal waters. This effect is most pronounced in marginal seas and estuaries where mixing with the open ocean is restricted and river input is relatively large. The variable composition of river water and its impact on the chemical composition of seawater are discussed further in Chapter 21. [Pg.61]

Hydrothermal vents are another source of water entering the ocean. These vents are submarine hot-water geysers that are part of seafloor spreading centers. The hydrothermal fluids contain some major ions, such as magnesium and sulfete, in significantly different ratios than foimd in seawater. The importance of hydrothermal venting in determining the chemical composition of seawater is described in Chapters 19 and 21. [Pg.63]

The chemical composition of seawater is largely regulated by biogeochemical processes that cause dissolved materials to be converted into solid forms. These solids are then deposited on the seafloor, making the sediments a very important reservoir in the crustal-ocean-atmosphere factory. Marine sediments are also important because they contain our only record of past conditions in the ocean. [Pg.327]


See other pages where Composition of seawater is mentioned: [Pg.178]    [Pg.178]    [Pg.216]    [Pg.469]    [Pg.259]    [Pg.264]    [Pg.274]    [Pg.277]    [Pg.374]    [Pg.375]    [Pg.459]    [Pg.4]    [Pg.12]    [Pg.124]    [Pg.398]    [Pg.123]    [Pg.171]    [Pg.232]    [Pg.247]    [Pg.435]    [Pg.58]    [Pg.124]    [Pg.327]    [Pg.373]    [Pg.525]    [Pg.525]    [Pg.526]   
See also in sourсe #XX -- [ Pg.8 , Pg.626 ]




SEARCH



Average composition of seawater

Composite seawater

Factors Controlling Chemical Composition of Seawater (Input and Output Fluxes)

Seawater composition

© 2024 chempedia.info